In Bayesian probability theory, if the posterior distribution is in the same probability distribution family as the prior probability distribution , the prior and posterior are then called conjugate distributions, and the prior is called a conjugate prior for the likelihood function . A conjugate prior is an algebraic convenience, giving a closed-form expression for the posterior; otherwise, numerical integration may be necessary. Further, conjugate priors may give intuition by more transparently showing how a likelihood function updates a prior distribution.
In probability theory and statistics, a categorical distribution (also called a generalized Bernoulli distribution, multinoulli distribution) is a discrete probability distribution that describes the possible results of a random variable that can take on one of K possible categories, with the probability of each category separately specified. There is no innate underlying ordering of these outcomes, but numerical labels are often attached for convenience in describing the distribution, (e.g. 1 to K).
In probability theory and statistics, the Dirichlet-multinomial distribution is a family of discrete multivariate probability distributions on a finite support of non-negative integers. It is also called the Dirichlet compound multinomial distribution (DCM) or multivariate Pólya distribution (after George Pólya). It is a compound probability distribution, where a probability vector p is drawn from a Dirichlet distribution with parameter vector , and an observation drawn from a multinomial distribution with probability vector p and number of trials n.
thumb|right|250px|Plusieurs images de la densité de la loi de Dirichlet lorsque K=3 pour différents vecteurs de paramètres α. Dans le sens horaire à partir du coin supérieur gauche : α=(6, 2, 2), (3, 7, 5), (6, 2, 6), (2, 3, 4). En probabilité et statistiques, la loi de Dirichlet, souvent notée Dir(α), est une famille de lois de probabilité continues pour des variables aléatoires multinomiales. Cette loi (ou encore distribution) est paramétrée par le vecteur α de nombres réels positifs et tire son nom de Johann Peter Gustav Lejeune Dirichlet.
En théorie des probabilités et en statistique, une famille exponentielle est une classe de lois de probabilité dont la forme générale est donnée par : où est la variable aléatoire, est un paramètre et est son paramètre naturel. Les familles exponentielles présentent certaines propriétés algébriques et inférentielles remarquables. La caractérisation d'une loi en famille exponentielle permet de reformuler la loi à l'aide de ce que l'on appelle des paramètres naturels.
L' est une méthode MCMC. Étant donné une distribution de probabilité sur un univers , cet algorithme définit une chaîne de Markov dont la distribution stationnaire est . Il permet ainsi de tirer aléatoirement un élément de selon la loi (on parle d'échantillonnage). Comme pour toutes les méthodes de Monte-Carlo à chaîne de Markov, on se place dans un espace vectoriel Ɛ de dimension finie n ; on veut générer aléatoirement N vecteurs x(i) suivant une distribution de probabilité π ; pour simplifier le problème, on détermine une distribution qx(i) permettant de générer aléatoirement x(i + 1) à partir de x(i).
En théorie des probabilités, la loi bêta-binomiale est une loi de probabilité discrète à support fini, correspondant à un processus de tirages Bernoulli dont la probabilité de succès est aléatoire (suivant une loi bêta). Elle est fréquemment utilisée en inférence bayésienne. La loi de Bernoulli en est un cas particulier pour le paramètre n = 1. Pour α = β = 1, elle correspond à la loi uniforme discrète sur {0,..,n} . Elle approche également la loi binomiale lorsque les paramètres α et β sont arbitrairement grands.
En théorie des probabilités et en statistiques, la loi de Poisson est une loi de probabilité discrète qui décrit le comportement du nombre d'événements se produisant dans un intervalle de temps fixé, si ces événements se produisent avec une fréquence moyenne ou espérance connue, et indépendamment du temps écoulé depuis l'événement précédent. gauche|vignette|Chewing gums sur un trottoir. Le nombre de chewing gums sur un pavé est approximativement distribué selon une loi de Poisson.
En théorie des probabilités, la loi multinomiale (aussi appelée distribution polynomiale) généralise la loi binomiale. Tandis que la loi binomiale concerne le nombre de succès lors d'une série de n épreuves de Bernoulli indépendantes, comme dans le jeu de pile ou face, la loi multinomiale ne se restreint pas aux épreuves comportant deux issues. La loi multinomiale s'applique par exemple au cas de n jets d'un dé à six faces : l'apparition du seul peut être modélisé par une loi binomiale alors que l'ensemble des apparitions des à 6 est modélisé par une loi multinomiale.
In statistics, a mixture model is a probabilistic model for representing the presence of subpopulations within an overall population, without requiring that an observed data set should identify the sub-population to which an individual observation belongs. Formally a mixture model corresponds to the mixture distribution that represents the probability distribution of observations in the overall population.