Mixing (mathematics)In mathematics, mixing is an abstract concept originating from physics: the attempt to describe the irreversible thermodynamic process of mixing in the everyday world: e.g. mixing paint, mixing drinks, industrial mixing. The concept appears in ergodic theory—the study of stochastic processes and measure-preserving dynamical systems. Several different definitions for mixing exist, including strong mixing, weak mixing and topological mixing, with the last not requiring a measure to be defined.
Théorème de récurrence de PoincaréLe théorème de récurrence de Poincaré dit que, pour presque toutes les « conditions initiales », un système dynamique conservatif dont l'espace des phases est de « volume » fini va repasser au cours du temps aussi près que l'on veut de sa condition initiale, et ce de façon répétée. Soit un système dynamique mesuré, c’est-à-dire un triplet où : est un espace mesurable, qui représente l'espace des phases du système. est une mesure finie sur , est une fonction mesurable préservant la mesure , c’est-à-dire telle que : Soit un sous-ensemble mesurable.
Théorie des systèmes dynamiquesLa théorie des systèmes dynamiques désigne couramment la branche des mathématiques qui s'efforce d'étudier les propriétés d'un système dynamique. Cette recherche active se développe à la frontière de la topologie, de l'analyse, de la géométrie, de la théorie de la mesure et des probabilités. La nature de cette étude est conditionnée par le système dynamique étudié et elle dépend des outils utilisés (analytiques, géométriques ou probabilistes).
Application de PoincaréEn mathématiques, particulièrement en système dynamique, une application de Poincaré, nommée en l'honneur de Henri Poincaré, est une application liée à une dans l'espace d'états d'un système dynamique et un certain sous-espace de dimension moindre, appelé la section de Poincaré, transverse au flot du système. Plus précisément, on considère une orbite suffisamment proche d'une orbite périodique, avec une condition initiale sur la section de Poincaré, et on observe le point auquel cette orbite revient à la section pour la première fois, d'où ses autres noms, application de premier retour ou application de récurrence.
Triangle de SierpińskiLe triangle de Sierpiński, ou tamis de Sierpińsky, également appelé par Mandelbrot le joint de culasse de Sierpiński, est une fractale, du nom de Wacław Sierpiński qui l'a décrit en 1915. Il peut s'obtenir à partir d'un triangle « plein », par une infinité de répétitions consistant à diviser par deux la taille du triangle puis à les accoler en trois exemplaires par leurs sommets pour former un nouveau triangle. À chaque répétition le triangle est donc de même taille, mais « de moins en moins plein ».
Conservative systemIn mathematics, a conservative system is a dynamical system which stands in contrast to a dissipative system. Roughly speaking, such systems have no friction or other mechanism to dissipate the dynamics, and thus, their phase space does not shrink over time. Precisely speaking, they are those dynamical systems that have a null wandering set: under time evolution, no portion of the phase space ever "wanders away", never to be returned to or revisited. Alternately, conservative systems are those to which the Poincaré recurrence theorem applies.
Attracteur de RösslerL'attracteur de Rössler est l'attracteur produit par un système dynamique constitué de trois équations différentielles ordinaires contenant un terme non linéaire introduit en 1976 par Otto E. Rössler. Pour certaines valeurs des paramètres, ces équations différentielles produisent un attracteur chaotique. C'est un exemple d'attracteur étrange (selon l'appellation de David Ruelle ) et qui présente des propriétés fractales. Otto Rössler a initialement obtenu un système dynamique produisant un attracteur chaotique à partir d'une réaction chimique théorique.
Billard (mathématiques)Un billard mathématique est un système dynamique dans lequel une particule alterne des mouvements libres sur une surface et des rebonds sur une paroi, sans perte de vitesse. L'angle de rebond est identique à l'angle d'incidence au moment de choc. Ces systèmes dynamiques sont des idéalisations hamiltoniennes du jeu de billard, mais où le domaine encadré par la frontière peut avoir d'autres formes qu'un rectangle et même être multidimensionnel. Les billards dynamiques peuvent aussi être étudiés sur des géométries non euclidiennes.
Attracteur de HénonL'attracteur de Hénon est un système dynamique à temps discret. C'est l'un des systèmes dynamiques ayant un comportement chaotique les plus étudiés. L'attracteur de Hénon prend tout point du plan (x, y) et lui associe le nouveau point : Il dépend de deux paramètres, a et b, qui ont pour valeurs canoniques : a = 1,4 et b = 0,3. Pour ces valeurs, l'attracteur de Hénon est chaotique. Pour d'autres valeurs de a et b, il peut être chaotique, intermittent ou converger vers une orbite périodique.
Fractal curveA fractal curve is, loosely, a mathematical curve whose shape retains the same general pattern of irregularity, regardless of how high it is magnified, that is, its graph takes the form of a fractal. In general, fractal curves are nowhere rectifiable curves — that is, they do not have finite length — and every subarc longer than a single point has infinite length. A famous example is the boundary of the Mandelbrot set. Fractal curves and fractal patterns are widespread, in nature, found in such places as broccoli, snowflakes, feet of geckos, frost crystals, and lightning bolts.