Courbure principaleEn géométrie différentielle des surfaces, les deux courbures principales d'une surface sont les courbures de cette surface selon deux directions perpendiculaires appelées directions principales. On montre que ce sont les courbures minimale et maximale rencontrées en faisant tourner le plan de coupe. Les courbures principales sont les valeurs propres de l'endomorphisme de Weingarten. Elles caractérisent la géométrie locale des surfaces à l'ordre 2.
PentagoneEn géométrie, un pentagone est un polygone à cinq sommets, donc cinq côtés et cinq diagonales. Un pentagone est soit simple (convexe ou concave), soit croisé. Le pentagone régulier étoilé est le pentagramme. Le terme « pentagone » dérive du latin pentagonum de même sens, substantivation de l'adjectif pentagonus, lui-même emprunté au grec ancien, πεντάγωνος (pentágônos), « pentagonal », « qui a cinq angles, cinq côtés ». Le terme grec est lui-même construit à partir de πέντε (pénte), « cinq », et γωνία (gônía), « angle ».
Barth surfaceNOTOC In algebraic geometry, a Barth surface is one of the complex nodal surfaces in 3 dimensions with large numbers of double points found by . Two examples are the Barth sextic of degree 6 with 65 double points, and the Barth decic of degree 10 with 345 double points. For degree 6 surfaces in P3, showed that 65 is the maximum number of double points possible. The Barth sextic is a counterexample to an incorrect claim by Francesco Severi in 1946 that 52 is the maximum number of double points possible.
Coordonnées de Kruskal-SzekeresLes coordonnées de Kruskal-Szekeres () sont un système de coordonnées d'espace-temps. Elles permettent d'obtenir l' qui est l'extension analytique maximale de la métrique de Schwarzschild. L'espace-temps ainsi étendu se décompose en quatre régions (, , et ) : les régions et sont respectivement l'extérieur et l'intérieur d'un trou noir ; les régions et , respectivement l'extérieur et l'intérieur d'un trou blanc. L'extension de Kruskal-Szekeres décrit un trou noir éternel.
Radical axisIn Euclidean geometry, the radical axis of two non-concentric circles is the set of points whose power with respect to the circles are equal. For this reason the radical axis is also called the power line or power bisector of the two circles. In detail: For two circles c_1, c_2 with centers M_1, M_2 and radii r_1, r_2 the powers of a point P with respect to the circles are Point P belongs to the radical axis, if If the circles have two points in common, the radical axis is the common secant line of the circles.
Puissance d'un point par rapport à un cercleEn géométrie euclidienne du plan, la puissance d'un point M par rapport à un cercle de centre O et de rayon R est un nombre qui indique la position de M par rapport à ce cercle. Elle peut être définie comme P(M) = OM - R. Il existe plusieurs résultats pour différentes formules de calcul de la puissance d'un point, selon la position du point par rapport au cercle. Ils reposent tous sur la construction de droites sécantes au cercle, passant par le point.
Fibré tangentEn mathématiques, et plus précisément en géométrie différentielle, le fibré tangent TM associé à une variété différentielle M est la somme disjointe de tous les espaces tangents en tous les points de la variété, soit : où est l'espace tangent de M en x. Un élément de TM est donc un couple (x, v) constitué d'un point x de M et d'un vecteur v tangent à M en x. Le fibré tangent peut être muni d'une topologie découlant naturellement de celle de M.
Variété différentielleEn mathématiques, les variétés différentielles ou variétés différentiables sont les objets de base de la topologie différentielle et de la géométrie différentielle. Il s'agit de variétés, « espaces courbes » localement modelés sur l'espace euclidien de dimension n, sur lesquelles il est possible de généraliser une bonne part des opérations du calcul différentiel et intégral. Une variété différentielle se définit donc d'abord par la donnée d'une variété topologique, espace topologique localement homéomorphe à l'espace R.
Coxeter elementIn mathematics, the Coxeter number h is the order of a Coxeter element of an irreducible Coxeter group. It is named after H.S.M. Coxeter. Note that this article assumes a finite Coxeter group. For infinite Coxeter groups, there are multiple conjugacy classes of Coxeter elements, and they have infinite order. There are many different ways to define the Coxeter number h of an irreducible root system. A Coxeter element is a product of all simple reflections.
Piecewise linear manifoldIn mathematics, a piecewise linear (PL) manifold is a topological manifold together with a piecewise linear structure on it. Such a structure can be defined by means of an atlas, such that one can pass from chart to chart in it by piecewise linear functions. This is slightly stronger than the topological notion of a triangulation. An isomorphism of PL manifolds is called a PL homeomorphism.