Angle inscrit dans un demi-cercleLe théorème de géométrie qui affirme que l'angle inscrit dans un demi-cercle est droit, est appelé Théorème de Thalès en Allemagne (Satz des Thales) à partir de la toute fin du , puis dans plusieurs pays, mais assez rarement en France où, à partir à peu près de la même époque, le « théorème de Thalès » désigne un théorème tout autre, sur la proportionnalité des segments découpés sur deux droites sécantes par des droites parallèles.
Géométrie synthétiqueLa géométrie synthétique ou géométrie pure est fondée sur une approche axiomatique (donc, « purement logique ») de la géométrie. Elle constitue une branche de la géométrie étudiant diverses propriétés et divers théorèmes uniquement par des méthodes d'intersections, de transformations et de constructions. Elle s'oppose à la géométrie analytique et refuse systématiquement l'utilisation des propriétés analytiques des figures ou l'appel aux coordonnées. Ses concepts principaux sont l'intersection, les transformations y compris par polaires réciproques, la logique.
Glide planeIn geometry and crystallography, a glide plane (or transflection) is a symmetry operation describing how a reflection in a plane, followed by a translation parallel with that plane, may leave the crystal unchanged. Glide planes are noted in the Hermann–Mauguin notation by a, b or c, depending on which axis the glide is along. (The orientation of the plane is determined by the position of the symbol in the Hermann–Mauguin designation.) If the axis is not defined, then the glide plane may be noted by g.
Folium de Descartesthumb|right|Le folium de Descartes (en vert) et son asymptote (en bleu) pour a = 1. Le folium de Descartes est une courbe algébrique mathématique en forme de nœud de ruban, définie par l’équation cartésienne Elle fut étudiée tout d'abord par Descartes et Roberval en 1638 (lors d'une correspondance avec Mersenne), puis par Huygens en 1672. Cette courbe met en évidence les faiblesses de la méthode de Fermat dans la recherche des extremums d'une courbe algébrique.
Plan osculateurEn mathématiques, et plus précisément en géométrie euclidienne, le plan osculateur en un point d'une courbe de l'espace est le plan affine qui « colle » au mieux à la courbe au voisinage de ce point. La notion de plan osculateur est introduite par Clairaut. Le terme, qui provient du latin osculari signifiant « baiser », « embrasser », traduit l'idée d'un plan qui approche au mieux localement la courbe en un point de celle-ci où le plan osculateur est calculé, qui a avec elle un meilleur contact.
Tenseur de RicciDans le cadre de la relativité générale, le champ de gravitation est interprété comme une déformation de l'espace-temps. Celle-ci est exprimée à l'aide du tenseur de Ricci. Le tenseur de Ricci est un champ tensoriel d'ordre 2, obtenu comme la trace du tenseur de courbure complet. On peut le considérer comme le laplacien du tenseur métrique riemannien dans le cas des variétés riemaniennes. Le tenseur de Ricci occupe une place importante notamment dans l'équation d'Einstein, équation principale de la relativité générale.
Surface minimaleEn mathématiques et en physique, une surface minimale est une surface minimisant son aire tout en réalisant une contrainte : un ensemble de points, ou le bord de la surface, est d'avance déterminé. Si un cerceau est retiré d'une bassine d'eau savonneuse, un disque de liquide reste fixé. Un souffle dessus déforme légèrement le disque en une calotte sphérique. Si l'étude fait appel à la mécanique des fluides, le traitement mathématique utilise le langage des surfaces minimales.
Surface areaThe surface area (symbol A) of a solid object is a measure of the total area that the surface of the object occupies. The mathematical definition of surface area in the presence of curved surfaces is considerably more involved than the definition of arc length of one-dimensional curves, or of the surface area for polyhedra (i.e., objects with flat polygonal faces), for which the surface area is the sum of the areas of its faces. Smooth surfaces, such as a sphere, are assigned surface area using their representation as parametric surfaces.
Schéma noethérienEn géométrie algébrique, les schémas noethériens sont aux schémas ce que les anneaux noethériens sont aux anneaux commutatifs. Ce sont les schémas qui possèdent un certain nombre de propriétés de finitude. De nombreux résultats fondamentaux en géométrie algébrique sont montrés dans le cadre des schémas noethériens. Il est généralement considéré comme raisonnable de travailler dans la catégorie des schémas noethériens. Un schéma affine Spec A est noethérien si A est un anneau noethérien.
Sphèrevignette|Rendu en fil de fer d'une sphère dans un espace euclidien. En géométrie dans l'espace, une sphère est une surface constituée de tous les points situés à une même distance d'un point appelé centre. La valeur de cette distance au centre est le rayon de la sphère. La géométrie sphérique est la science qui étudie les propriétés des sphères. La surface de la Terre peut, en première approximation, être modélisée par une sphère dont le rayon est d'environ .