Explore les techniques avancées de modélisation à plusieurs niveaux, y compris l'adaptation de modèles distincts, l'estimation des coefficients et la vérification des résidus pour l'évaluation des modèles.
Explore les effets aléatoires, la vérification du modèle et les effets imbriqués par rapport aux effets croisés dans la modélisation de régression moderne.
Explore les modèles additifs généralisés, couvrant les bases, les fonctions lisses, les pénalités, les exemples pratiques en R, et les modèles mixtes linéaires.
Couvre les moindres carrés pondérés itératifs, la régression de Poisson et l'analyse bayésienne des données sur l'orge de printemps à l'aide de modèles mixtes.
Couvre les matrices définies non négatives, les matrices de covariance et l'analyse en composantes principales pour une réduction optimale des dimensions.