Conditioning (probability)Beliefs depend on the available information. This idea is formalized in probability theory by conditioning. Conditional probabilities, conditional expectations, and conditional probability distributions are treated on three levels: discrete probabilities, probability density functions, and measure theory. Conditioning leads to a non-random result if the condition is completely specified; otherwise, if the condition is left random, the result of conditioning is also random.
Product-form solutionIn probability theory, a product-form solution is a particularly efficient form of solution for determining some metric of a system with distinct sub-components, where the metric for the collection of components can be written as a product of the metric across the different components. Using capital Pi notation a product-form solution has algebraic form where B is some constant. Solutions of this form are of interest as they are computationally inexpensive to evaluate for large values of n.
Notation in probability and statisticsProbability theory and statistics have some commonly used conventions, in addition to standard mathematical notation and mathematical symbols. Random variables are usually written in upper case roman letters: , , etc. Particular realizations of a random variable are written in corresponding lower case letters. For example, could be a sample corresponding to the random variable . A cumulative probability is formally written to differentiate the random variable from its realization.
Processus d'Ornstein-UhlenbeckEn mathématiques, le processus d'Ornstein-Uhlenbeck, nommé d'après Leonard Ornstein et George Uhlenbeck et aussi connu sous le nom de mean-reverting process, est un processus stochastique décrit par l'équation différentielle stochastique où θ, μ et σ sont des paramètres déterministes et Wt est le processus de Wiener. Cette équation est résolue par la méthode de variation des constantes.
Balance equationIn probability theory, a balance equation is an equation that describes the probability flux associated with a Markov chain in and out of states or set of states. The global balance equations (also known as full balance equations) are a set of equations that characterize the equilibrium distribution (or any stationary distribution) of a Markov chain, when such a distribution exists. For a continuous time Markov chain with state space , transition rate from state to given by and equilibrium distribution given by , the global balance equations are given by or equivalently for all .
Stochastic geometryIn mathematics, stochastic geometry is the study of random spatial patterns. At the heart of the subject lies the study of random point patterns. This leads to the theory of spatial point processes, hence notions of Palm conditioning, which extend to the more abstract setting of random measures. There are various models for point processes, typically based on but going beyond the classic homogeneous Poisson point process (the basic model for complete spatial randomness) to find expressive models which allow effective statistical methods.
Lemme local de LovászLe lemme local de Lovász (parfois abrégé LLL) est un résultat de théorie des probabilités discrètes, dû à László Lovász et Paul Erdős. Il généralise le fait que la probabilité que des événements indépendants arrivent en même temps est égale au produit des probabilités de ces événements. Il existe plusieurs versions de ce résultat. Le lemme local est utilisé dans plusieurs domaines, notamment en combinatoire et en informatique théorique.
Processus de naissance et de mortLes processus de naissance et de mort sont des cas particuliers de processus de Markov en temps continu où les transitions d'état sont de deux types seulement : les «naissances» où l'état passe de n à n+1 et les morts où l'état passe de n à n-1. Ces processus ont de nombreuses applications en dynamique des populations et dans la . Le processus est spécifié par les taux de naissance et les taux de mortalité . On suppose que .
Probabilitévignette|Quatre dés à six faces de quatre couleurs différentes. Les six faces possibles sont visibles. Le terme probabilité possède plusieurs sens : venu historiquement du latin probabilitas, il désigne l'opposé du concept de certitude ; il est également une évaluation du caractère probable d'un événement, c'est-à-dire qu'une valeur permet de représenter son degré de certitude ; récemment, la probabilité est devenue une science mathématique et est appelée théorie des probabilités ou plus simplement probabilités ; enfin une doctrine porte également le nom de probabilisme.
Univers (probabilités)vignette|Lancé d'une pièce (pile ou face) En théorie des probabilités, un univers, souvent noté , ou , est l'ensemble de toutes les issues (résultats) pouvant être obtenues au cours d'une expérience aléatoire. À chaque élément de l'univers , c'est-à-dire à chacun des résultats possibles de l'expérience considérée, nous pouvons associer le sous-ensemble constitué de cet élément, appelé événement élémentaire. De manière plus générale, toute partie de l'univers est appelée un événement.