Diffusion de la matièreLa diffusion de la matière, ou diffusion chimique, désigne la tendance naturelle d'un système à rendre uniforme le potentiel chimique de chacune des espèces chimiques qu'il comporte. La diffusion chimique est un phénomène de transport irréversible qui tend à homogénéiser la composition du milieu. Dans le cas d'un mélange binaire et en l'absence des gradients de température et de pression, la diffusion se fait des régions de plus forte concentration vers les régions de concentration moindre.
Spacetime symmetriesSpacetime symmetries are features of spacetime that can be described as exhibiting some form of symmetry. The role of symmetry in physics is important in simplifying solutions to many problems. Spacetime symmetries are used in the study of exact solutions of Einstein's field equations of general relativity. Spacetime symmetries are distinguished from internal symmetries. Physical problems are often investigated and solved by noticing features which have some form of symmetry.
Mécanique relativisteEn physique, la mécanique relativiste se rapporte à la mécanique compatible avec la relativité restreinte (RR) et la relativité générale (RG). Elle fournit une description non-quantique d'un système de particules, ou d'un liquide, dans le cas où les vitesses de déplacement des objets sont comparables à la vitesse de la lumière c. En conséquence, la mécanique classique est étendue correctement aux particules se déplaçant à des vitesses et des énergies élevées, et assure une inclusion cohérente de l'électromagnétisme avec la mécanique des particules.
Théorèmes de NewtonLes sont deux relatifs au potentiel gravitationnel d'une distribution de masse à symétrie sphérique. Leur éponyme est Isaac Newton, qui les a tous deux démontrés. Après avoir découvert la loi universelle de gravitation entre deux points, Isaac Newton s'est penché sur le cas des corps sphériques. Il a apporté deux résultats connus sous le nom de premier et second théorème selon qu'on considère la force à l'intérieur ou à l'extérieur d'une sphère. Il est rapidement parvenu à démontrer le premier théorème.
Geodesics in general relativityIn general relativity, a geodesic generalizes the notion of a "straight line" to curved spacetime. Importantly, the world line of a particle free from all external, non-gravitational forces is a particular type of geodesic. In other words, a freely moving or falling particle always moves along a geodesic. In general relativity, gravity can be regarded as not a force but a consequence of a curved spacetime geometry where the source of curvature is the stress–energy tensor (representing matter, for instance).
Quadri-momentEn relativité restreinte, le quadri-moment (ou quadrivecteur impulsion ou quadri-impulsion ou quadrivecteur impulsion-énergie ou quadrivecteur énergie-impulsion) est une généralisation du moment linéaire tridimensionnel de la physique classique sous la forme d'un quadrivecteur de l'espace de Minkowski, espace-temps à 4 dimensions de la relativité restreinte. Le quadri-moment d'une particule combine le moment tridimensionnel et d'énergie : Comme tout quadrivecteur, il est covariant, c'est-à-dire que les changements de ses coordonnées lors d'un changement de référentiel inertiel se calculent à l'aide des transformations de Lorentz.
Spherically symmetric spacetimeIn physics, spherically symmetric spacetimes are commonly used to obtain analytic and numerical solutions to Einstein's field equations in the presence of radially moving matter or energy. Because spherically symmetric spacetimes are by definition irrotational, they are not realistic models of black holes in nature. However, their metrics are considerably simpler than those of rotating spacetimes, making them much easier to analyze.
Fluide parfaitthumb|alt=Le tenseur de stress-énergie d'un fluide parfait ne contient que les composants diagonaux. |Le tenseur de stress-énergie d'un fluide parfait ne contient que les composants diagonaux. En mécanique des fluides, un fluide est dit parfait s'il est possible de décrire son mouvement sans prendre en compte les effets de viscosité et de conduction thermique. Le mouvement du fluide est donc adiabatique, décrit par les équations d'Euler.
Métrique (physique)En relativité restreinte et en relativité générale, une métrique est un invariant relativiste infinitésimal ayant la dimension d'une longueur. Mathématiquement, il s'agit d'un tenseur métrique relatif à la variété différentielle représentant l'espace-temps physique. En relativité générale, une métrique dans un référentiel contient toutes les informations sur la gravitation telle qu'elle y est perçue. Une métrique d'espace-temps s'exprime sous la forme d'une somme algébrique de carrés de formes différentielles linéaires.
Singularité nueEn relativité générale, une singularité nue () est une singularité gravitationnelle qui ne serait pas cachée derrière un horizon des événements. Le concept s'oppose à celui d'une singularité située à l'intérieur d'un trou noir, qui est cachée par l'horizon à partir duquel la force gravitationnelle courbe suffisamment l'espace-temps pour que même la lumière ne puisse s'en échapper. Par conséquent, les objets situés à l'intérieur de l’horizon des événements, y compris la singularité elle-même, ne peuvent être observés directement.