Couvre le concept de cohomologie de groupe, se concentrant sur les complexes de chaîne, les complexes de cochain, les produits de tasse et les anneaux de groupe.
Couvre la théorie des groupes et de l'algèbre homotopique, mettant l'accent sur les transformations naturelles, les identités et l'isomorphisme des catégories.
Explore la théorie de l'homotopie des complexes de chaînes, en se concentrant sur les catégories de modèles, les équivalences faibles, et l'axiome de rétractation.
Explore des exemples d'algèbres homotopiques et des adjonctions, en se concentrant sur les articulations gauche et droite dans les functeurs de groupe et les coproduits.