Cube tronquéIn geometry, the truncated cube, or truncated hexahedron, is an Archimedean solid. It has 14 regular faces (6 octagonal and 8 triangular), 36 edges, and 24 vertices. If the truncated cube has unit edge length, its dual triakis octahedron has edges of lengths 2 and 2 + . The area A and the volume V of a truncated cube of edge length a are: The truncated cube has five special orthogonal projections, centered, on a vertex, on two types of edges, and two types of faces: triangles, and octagons.
Pyramide à base carréeEn géométrie, une pyramide à base carrée est une pyramide avec une base carrée et quatre faces latérales triangulaires. Si les quatre faces triangulaires sont équilatérales, alors la pyramide est un solide de Johnson (J1), et peut être pensée comme la moitié d'un octaèdre. D'autres pyramides carrées ne sont pas semblables à ce solide de Johnson ; la pyramide de Khéops, par exemple, possède quatre faces triangulaires isocèles non équilatérales.
Polygone dualEn géométrie, les polygones peuvent être associés par paires de duaux, où les sommets de l'un correspondent aux côtés de l'autre. vignette|upright=1.5|La construction « de Dorman Luke » du dual d'un polyèdre, montrant une face rhombique duale à une face rectangulaire. Les polygones réguliers sont autoduaux, c'est-à-dire qu'ils sont leur propre polygone dual. Le dual d'un polygone isogonal est un polygone isotoxal. Par exemple, le rectangle (isogonal) et le losange (isotoxal) sont duaux.
Cube adouciLe cube adouci ou cuboctaèdre adouci est un solide d'Archimède. Le cube adouci possède 38 faces dont 6 sont des carrés et les 32 autres sont des triangles équilatéraux. Il possède 60 arêtes et 24 sommets. Il a deux formes distinctes, qui sont leurs images dans un miroir (ou "énantiomorphes") l'un de l'autre.
Polygone régulier étoiléEn géométrie, un polygone régulier étoilé (à ne pas confondre avec une partie étoilée) est un polygone régulier non convexe. Les polygones étoilés non réguliers ne sont pas formellement définis. Branko Grünbaum identifie deux notions primaires utilisées par Kepler, l'une étant le polygone régulier étoilé avec des arêtes sécantes qui ne génèrent pas de nouveaux sommets, et l'autre étant de simples polygones concaves.
Grand dodécaèdre étoiléEn géométrie, le grand dodécaèdre étoilé est un solide de Kepler-Poinsot. C'est l'un des quatre polyèdres réguliers non convexes. Il est composé de 12 faces pentagrammiques, avec trois pentagrammes se rencontrant à chaque sommet. Les 20 sommets ont la même disposition que ceux du dodécaèdre régulier. Raser les pyramides triangulaires donne un icosaèdre régulier. Si les faces pentagrammiques sont cassées en triangles, il est relié topologiquement au triaki-icosaèdre, avec la même connectivité de faces, mais avec des faces triangulaires isocèles plus grandes.
Density (polytope)In geometry, the density of a star polyhedron is a generalization of the concept of winding number from two dimensions to higher dimensions, representing the number of windings of the polyhedron around the center of symmetry of the polyhedron. It can be determined by passing a ray from the center to infinity, passing only through the facets of the polytope and not through any lower dimensional features, and counting how many facets it passes through.
Polyèdre étoiléEn géométrie, le terme polyèdre étoilé ne semble pas avoir été défini proprement, même si l'objet est pensé dans le sens commun. On peut dire qu'un polyèdre étoilé est un polyèdre qui possède une certaine qualité répétitive de non-convexité lui donnant l'aspect d'une étoile. Il existe deux espèces générales de polyèdres étoilés : Les polyèdres qui s'auto-intersectent d'une manière répétitive. Les polyèdres concaves d'une sorte particulière qui alternent les parties concaves et convexes ou les sommets de selle d'une manière répétitive.
Pavage carré tronquéIn geometry, the truncated square tiling is a semiregular tiling by regular polygons of the Euclidean plane with one square and two octagons on each vertex. This is the only edge-to-edge tiling by regular convex polygons which contains an octagon. It has Schläfli symbol of t{4,4}. Conway calls it a truncated quadrille, constructed as a truncation operation applied to a square tiling (quadrille). Other names used for this pattern include Mediterranean tiling and octagonal tiling, which is often represented by smaller squares, and nonregular octagons which alternate long and short edges.
Hypercubic honeycombIn geometry, a hypercubic honeycomb is a family of regular honeycombs (tessellations) in n-dimensional spaces with the Schläfli symbols {4,3...3,4} and containing the symmetry of Coxeter group R_n (or B^~_n–1) for n ≥ 3. The tessellation is constructed from 4 n-hypercubes per ridge. The vertex figure is a cross-polytope {3...3,4}. The hypercubic honeycombs are self-dual. Coxeter named this family as δ_n+1 for an n-dimensional honeycomb. A Wythoff construction is a method for constructing a uniform polyhedron or plane tiling.