Fonction itéréeEn mathématiques, une fonction itérée est une fonction obtenue par composition répétée d’une autre fonction avec elle-même un certain nombre de fois. La procédure consistant à appliquer la même fonction à plusieurs reprises s’appelle itération. Les fonctions itérées apparaissent en informatique, dans les systèmes dynamiques, les groupes de renormalisation et sont à la base des fractales. L’itérée, plus précisément la deuxième itérée, d’une fonction f , définie sur un ensemble X et à valeurs dans ce même ensemble X, est la fonction où note la composition de fonctions.
Théorème du point fixe de BrouwerEn mathématiques, et plus précisément en topologie algébrique, le théorème du point fixe de Brouwer fait partie de la grande famille des théorèmes de point fixe, qui énoncent que si une fonction continue f vérifie certaines propriétés, alors il existe un point x0 tel que f(x0) = x0. La forme la plus simple du théorème de Brouwer prend comme hypothèse que la fonction f est définie sur un intervalle fermé borné non vide I et à valeurs dans I. Sous une forme plus générale, la fonction est définie sur un convexe compact K d'un espace euclidien et à valeurs dans K.
Fixed-point theorems in infinite-dimensional spacesIn mathematics, a number of fixed-point theorems in infinite-dimensional spaces generalise the Brouwer fixed-point theorem. They have applications, for example, to the proof of existence theorems for partial differential equations. The first result in the field was the Schauder fixed-point theorem, proved in 1930 by Juliusz Schauder (a previous result in a different vein, the Banach fixed-point theorem for contraction mappings in complete metric spaces was proved in 1922). Quite a number of further results followed.
Théorème du point fixe de Kakutanivignette|Exemple animé montrant des points x, et leurs images φ(x) par la fonction φ. L'animation finit par montrer un point x contenu dans φ(x). En analyse mathématique, le théorème du point fixe de Kakutani est un théorème de point fixe qui généralise celui de Brouwer à des fonctions à valeurs ensemblistes. Il fournit une condition suffisante pour qu'une telle fonction, définie sur un compact convexe d'un espace euclidien, possède un point fixe, c'est-à-dire dans ce contexte : un point qui appartient à son par cette fonction.
Banach fixed-point theoremIn mathematics, the Banach fixed-point theorem (also known as the contraction mapping theorem or contractive mapping theorem or Banach-Caccioppoli theorem) is an important tool in the theory of metric spaces; it guarantees the existence and uniqueness of fixed points of certain self-maps of metric spaces, and provides a constructive method to find those fixed points. It can be understood as an abstract formulation of Picard's method of successive approximations. The theorem is named after Stefan Banach (1892–1945) who first stated it in 1922.
Fixed-point iterationIn numerical analysis, fixed-point iteration is a method of computing fixed points of a function. More specifically, given a function defined on the real numbers with real values and given a point in the domain of , the fixed-point iteration is which gives rise to the sequence of iterated function applications which is hoped to converge to a point . If is continuous, then one can prove that the obtained is a fixed point of , i.e., More generally, the function can be defined on any metric space with values in that same space.
Set-valued functionA set-valued function (or correspondence) is a mathematical function that maps elements from one set, the domain of the function, to subsets of another set. Set-valued functions are used in a variety of mathematical fields, including optimization, control theory and game theory. Set-valued functions are also known as multivalued functions in some references, but herein and in many others references in mathematical analysis, a multivalued function is a set-valued function f that has a further continuity property, namely that the choice of an element in the set defines a corresponding element in each set for y close to x, and thus defines locally an ordinary function.
Équilibre de Nashvignette|Le dilemme du prisonnier : chacun des deux joueurs dispose de deux stratégies : D pour dénoncer, C pour ne pas dénoncer. La matrice présente le gain des joueurs. Si les deux joueurs choisissent D (se dénoncent), aucun ne regrette son choix, car s'il avait choisi C, alors que l'autre a opté pour D, sa « tristesse » aurait augmenté. C'est un équilibre de Nash — il y a « non-regret » de son choix par chacun, au vu du choix de l'autre.
Sémantique dénotationnelleEn informatique, la sémantique dénotationnelle est une des approches permettant de formaliser la signification d'un programme en utilisant les mathématiques. Parmi les autres approches, on trouve la sémantique axiomatique et la sémantique opérationnelle. Cette discipline a été introduite par Christopher Strachey et Dana Scott. En général, la sémantique dénotationnelle utilise des techniques de programmation fonctionnelle pour décrire les langages informatiques, les architectures et les programmes.
Point fixeEn mathématiques, pour une application f d'un ensemble E dans lui-même, un élément x de E est un point fixe de f si f(x) = x. Exemples : dans le plan, la symétrie par rapport à un point A admet un unique point fixe : A ; l'application inverse (définie sur l'ensemble des réels non nuls) admet deux points fixes : –1 et 1, solutions de l'équation équivalente à l'équation . Graphiquement, les points fixes d'une fonction f (d'une variable réelle, à valeurs réelles) sont les points d'intersection de la droite d'équation y = x avec la courbe d'équation y = f(x).