Explore la maximisation de la diversité dans la sélection des documents, la détermination des cliques de graphes, les théorèmes sur le type négatif et l'optimisation convexe.
Couvre les propriétés stochastiques, les structures du réseau, les modèles, les statistiques, les mesures de centralité et les méthodes d'échantillonnage dans l'analyse des données du réseau.
Explore la propagation des croyances sur les graphes, en mettant l'accent sur la normalisation, les relations récursives et le calcul itératif de la fonction de partition.