Modular lambda functionIn mathematics, the modular lambda function λ(τ) is a highly symmetric Holomorphic function on the complex upper half-plane. It is invariant under the fractional linear action of the congruence group Γ(2), and generates the function field of the corresponding quotient, i.e., it is a Hauptmodul for the modular curve X(2). Over any point τ, its value can be described as a cross ratio of the branch points of a ramified double cover of the projective line by the elliptic curve , where the map is defined as the quotient by the [−1] involution.
Fonction êta de DedekindLa fonction êta de Dedekind est une fonction définie sur le demi-plan de Poincaré formé par les nombres complexes de partie imaginaire strictement positive. Pour un tel nombre complexe , on pose et la fonction êta est alors : , en posant . La fonction êta est holomorphe dans le demi-plan supérieur mais n'admet pas de prolongement analytique en dehors de cet ensemble. La fonction êta vérifie les deux équations fonctionnelles et La seconde se généralise : soient des entiers tels que (donc associés à une transformation de Möbius appartenant au groupe modulaire), avec .
Théorème de Faltingsvignette|Gerd Faltings. En théorie des nombres, le théorème de Faltings, précédemment connu sous le nom de conjecture de Mordell donne des résultats sur le nombre de solutions d'une équation diophantienne. Il a été conjecturé par le mathématicien anglais Louis Mordell en 1922 et démontré par Gerd Faltings en 1983, soit environ soixante ans après que la conjecture fut posée. Soit l'équation définie de la manière suivante : avec P un polynôme à coefficients rationnels.
Curve25519vignette|Représentation de la courbe elliptique Curve25519 Curve25519 est une courbe elliptique offrant 128 bits de sécurité et conçue pour être utilisée par le protocole d'échange de clés Diffie-Hellman basé sur les courbes elliptiques (ECDH). C'est une courbe elliptique permettant des performances très élevées, n'étant protégée par aucun brevet connu et moins affectée par les générateurs de nombres pseudo-aléatoires défaillants. Le brouillon original Curve25519, le définissait comme une fonction Diffie–Hellman (DH).
Point singulier d'une courbeEn géométrie, un point singulier d'une courbe est un point en lequel la courbe ne peut être paramétrée par un plongement lisse. Les définitions plus précises du point singulier d'une courbe dépendent du type de courbe concernée. Les courbes algébriques planes peuvent être définies comme étant un ensemble de points qui satisfont une équation de la forme où est une fonction polynomiale. Supposons est développée sous la forme : et si l'origine (0, 0) est sur la courbe, alors .
Multiplication complexeEn mathématiques, une courbe elliptique est à multiplication complexe si l'anneau de ses endomorphismes est plus grand que celui des entiers (il existe une théorie plus générale de la multiplication complexe pour les variétés abéliennes de dimension supérieure). Cette notion est liée au douzième problème de Hilbert. Un exemple de courbe elliptique avec multiplication complexe est C/Z[i]θ où Z[i] est l'anneau des entiers de Gauss, et θ est n'importe quel nombre complexe différent de zéro.
Exponentiation rapideEn informatique, l'exponentiation rapide est un algorithme utilisé pour calculer rapidement de grandes puissances entières. En anglais, cette méthode est aussi appelée square-and-multiply (« mettre au carré et multiplier »). La première façon de calculer une puissance x est de multiplier x par lui-même n fois. Cependant, il existe des méthodes bien plus efficaces, où le nombre d'opérations nécessaires n'est plus de l'ordre de n mais de l'ordre de .
IsogenyIn mathematics, particularly in algebraic geometry, an isogeny is a morphism of algebraic groups (also known as group varieties) that is surjective and has a finite kernel. If the groups are abelian varieties, then any morphism f : A → B of the underlying algebraic varieties which is surjective with finite fibres is automatically an isogeny, provided that f(1_A) = 1_B. Such an isogeny f then provides a group homomorphism between the groups of k-valued points of A and B, for any field k over which f is defined.
Arithmetic dynamicsArithmetic dynamics is a field that amalgamates two areas of mathematics, dynamical systems and number theory. Part of the inspiration comes from complex dynamics, the study of the iteration of self-maps of the complex plane or other complex algebraic varieties. Arithmetic dynamics is the study of the number-theoretic properties of integer, rational, p-adic, or algebraic points under repeated application of a polynomial or rational function. A fundamental goal is to describe arithmetic properties in terms of underlying geometric structures.
Barry MazurBarry Charles Mazur, né le à New York, est un mathématicien américain. Mazur a étudié à la Bronx High School of Science et au MIT, puis il a obtenu son Ph.D. (encadré par Ralph Fox et R. H. Bing) à Princeton en 1959 et a été Junior Fellow de Harvard de 1961 à 1964. Il est actuellement Professeur Gerhard Gade et Senior Fellow à Harvard. Il a encadré plus de cinquante thèses, dont celles de Noam Elkies, Jordan Ellenberg, Ofer Gabber, Michael Harris, Daniel Kane, Michael McQuillan et Paul Vojta.