Concepts associés (5)
Tétration
La tétration (ou encore nappe exponentielle, hyperpuissance, tour de puissances, super-exponentiation ou hyper4) est une « exponentiation itérée ». C'est le premier hyperopérateur après l'exponentiation. Le mot-valise tétration a été forgé par Reuben Goodstein sur la base du préfixe tétra- (quatre) et itération. La tétration est utilisée pour l'écriture des grands nombres. Elle suit l'addition, la multiplication et l'exponentiation comme indiqué ci-après : addition multiplication exponentiation tétration avec chaque fois b apparitions de la lettre a.
Logarithme
vignette|Tracés des fonctions logarithmes en base 2, e et 10. En mathématiques, le logarithme (de logos : rapport et arithmos : nombre) de base d'un nombre réel strictement positif est la puissance à laquelle il faut élever la base pour obtenir ce nombre. Dans le cas le plus simple, le logarithme compte le nombre d'occurrences du même facteur dans une multiplication répétée : comme 1000 = 10×10×10 = 10, le logarithme en base 10 de 1000 est 3. Le logarithme de en base est noté : . John Napier a développé les logarithmes au début du .
Comparaison asymptotique
En mathématiques, plus précisément en analyse, la comparaison asymptotique est une méthode consistant à étudier la vitesse de croissance d'une fonction au voisinage d'un point ou à l'infini, en la comparant à celle d'une autre fonction considérée comme plus « simple ». Celle-ci est souvent choisie sur une échelle de référence, contenant en général au moins certaines fonctions dites élémentaires, en particulier les sommes et produits de polynômes, d'exponentielles et de logarithmes.
Analyse de la complexité des algorithmes
vignette|Représentation d'une recherche linéaire (en violet) face à une recherche binaire (en vert). La complexité algorithmique de la seconde est logarithmique alors que celle de la première est linéaire. L'analyse de la complexité d'un algorithme consiste en l'étude formelle de la quantité de ressources (par exemple de temps ou d'espace) nécessaire à l'exécution de cet algorithme. Celle-ci ne doit pas être confondue avec la théorie de la complexité, qui elle étudie la difficulté intrinsèque des problèmes, et ne se focalise pas sur un algorithme en particulier.
Complexité en temps
En algorithmique, la complexité en temps est une mesure du temps utilisé par un algorithme, exprimé comme fonction de la taille de l'entrée. Le temps compte le nombre d'étapes de calcul avant d'arriver à un résultat. Habituellement, le temps correspondant à des entrées de taille n est le temps le plus long parmi les temps d’exécution des entrées de cette taille ; on parle de complexité dans le pire cas. Les études de complexité portent dans la majorité des cas sur le comportement asymptotique, lorsque la taille des entrées tend vers l'infini, et l'on utilise couramment les notations grand O de Landau.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.