Série génératriceEn mathématiques, et notamment en analyse et en combinatoire, une série génératrice (appelée autrefois fonction génératrice, terminologie encore utilisée en particulier dans le contexte de la théorie des probabilités) est une série formelle dont les coefficients codent une suite de nombres (ou plus généralement de polynômes) ; on dit que la série est associée à la suite. Ces séries furent introduites par Abraham de Moivre en 1730, pour obtenir des formules explicites pour des suites définies par récurrence linéaire.
Srinivasa Ramanujanvignette|thumbtime=566|start=567|end=610|alt=documentaire indien en anglais|upright=1.5|Extrait de Srinivasa Ramanujan- The Mathematician & His Legacy (Srinivasa Ramanujan : le mathématicien et son héritage), un documentaire produit par le Ministère des Affaires étrangères de l'Inde ; on y voit les cahiers de Ramanujan, conservés à l'université de Madras. Srinivasa Ramanujan (en tamoul : சீனிவாச இராமானுஜன் ; ), né le à Erode et mort le à Kumbakonam, est un mathématicien indien.
Partition function (number theory)In number theory, the partition function p(n) represents the number of possible partitions of a non-negative integer n. For instance, p(4) = 5 because the integer 4 has the five partitions 1 + 1 + 1 + 1, 1 + 1 + 2, 1 + 3, 2 + 2, and 4. No closed-form expression for the partition function is known, but it has both asymptotic expansions that accurately approximate it and recurrence relations by which it can be calculated exactly. It grows as an exponential function of the square root of its argument.
PermutationEn mathématiques, la notion de permutation exprime l'idée de réarrangement d'objets discernables. Une permutation d'objets distincts rangés dans un certain ordre correspond à un changement de l'ordre de succession de ces objets. La permutation est une des notions fondamentales en combinatoire, c'est-à-dire pour des problèmes de dénombrement et de probabilités discrètes. Elle sert ainsi à définir et à étudier le carré magique, le carré latin, le sudoku, ou le Rubik's Cube.
Tableau de YoungLes tableaux de Young sont des objets combinatoires qui jouent un rôle important en théorie des représentations des groupes et dans la théorie des fonctions symétriques. Ils permettent en particulier de construire les représentations irréductibles du groupe symétrique, ainsi que celles du groupe général linéaire sur le corps des complexes. Les tableaux de Young ont été introduits par Alfred Young, un mathématicien de l'université de Cambridge, en 1900. Ils ont été appliqués à l'étude du groupe symétrique par Georg Frobenius en 1903.
Conjecture de GoldbachLa conjecture de Goldbach est l'assertion mathématique qui s’énonce comme suit : Formulée en 1742 par Christian Goldbach, c’est l’un des plus vieux problèmes non résolus de la théorie des nombres et des mathématiques. Il partage avec l'hypothèse de Riemann et la conjecture des nombres premiers jumeaux le numéro 8 des problèmes de Hilbert, énoncés par celui-ci en 1900.
CombinatoireEn mathématiques, la combinatoire, appelée aussi analyse combinatoire, étudie les configurations de collections finies d'objets ou les combinaisons d'ensembles finis, et les dénombrements. La combinatoire est en fait présente dans toute l'antiquité en Inde et en Chine. Donald Knuth, dans le volume 4A « Combinatorial Algorithms » de The Art of Computer Programming parle de la génération de n-uplets ; il dit que la génération de motifs combinatoires «a commencé alors que la civilisation elle-même prenait forme» (« began as civilization itself was taking shape»).
Suite définie par récurrenceEn mathématiques, une suite définie par récurrence est une suite définie par son (ou ses) premier(s) terme(s) et par une relation de récurrence, qui définit chaque terme à partir du précédent ou des précédents lorsqu'ils existent. Une relation de récurrence est une équation dans laquelle l'expression de plusieurs termes de la suite apparait, par exemple : ou ou ou si l'on se place dans les suites de mots sur l'alphabet : Si la relation de récurrence a une « bonne » présentation, cela permet de calculer l'expression du terme d'indice le plus élevé en fonction de l'expression des autres.
Covering relationIn mathematics, especially order theory, the covering relation of a partially ordered set is the binary relation which holds between comparable elements that are immediate neighbours. The covering relation is commonly used to graphically express the partial order by means of the Hasse diagram. Let be a set with a partial order . As usual, let be the relation on such that if and only if and . Let and be elements of . Then covers , written , if and there is no element such that .
Distributive latticeIn mathematics, a distributive lattice is a lattice in which the operations of join and meet distribute over each other. The prototypical examples of such structures are collections of sets for which the lattice operations can be given by set union and intersection. Indeed, these lattices of sets describe the scenery completely: every distributive lattice is—up to isomorphism—given as such a lattice of sets. As in the case of arbitrary lattices, one can choose to consider a distributive lattice L either as a structure of order theory or of universal algebra.