Robustesse (statistiques)En statistiques, la robustesse d'un estimateur est sa capacité à ne pas être perturbé par une modification dans une petite partie des données ou dans les paramètres du modèle choisi pour l'estimation. Ricardo A. Maronna, R. Douglas Martin et Victor J. Yohai; Robust Statistics - Theory and Methods, Wiley Series in Probability and Statistics (2006). Dagnelie P.; Statistique théorique et appliquée. Tome 2 : Inférence statistique à une et à deux dimensions, Paris et Bruxelles (2006), De Boeck et Larcier.
Fonction de PearsonLes fonctions de Pearson ont été créées pour représenter des distributions unimodales. Il en existe douze. Elles ont été inventées par Karl Pearson à la fin du et au début du . Le système de Pearson a été originellement conçu afin de modéliser des observations visiblement asymétriques. Les méthodes pour ajuster un modèle théorique aux deux premiers cumulants ou moments de données observées : toute distribution peut être étendue directement une famille de distributions adaptée.
Degré de liberté (statistiques)En statistiques le degré de liberté (ddl) désigne le nombre de variables aléatoires qui ne peuvent être déterminées ou fixées par une équation (notamment les équations des tests statistiques). Une autre définition est : . Le degré de liberté est égal au nombre d'observations moins le nombre de relations entre ces observations : on pourrait remplacer l'expression « nombre de relations » par « nombre de paramètres à estimer ». Supposons un ensemble de n variables aléatoires, toutes de même loi et indépendantes X,.
Loi de FisherEn théorie des probabilités et en statistiques, la loi de Fisher ou encore loi de Fisher-Snedecor ou encore loi F de Snedecor est une loi de probabilité continue. Elle tire son nom des statisticiens Ronald Aylmer Fisher et George Snedecor. La loi de Fisher survient très fréquemment en tant que loi de la statistique de test lorsque l'hypothèse nulle est vraie, dans des tests statistiques, comme les tests du ratio de vraisemblance, dans les tests de Chow utilisés en économétrie, ou encore dans l'analyse de la variance (ANOVA) via le test de Fisher.
Résidu (statistiques)In statistics and optimization, errors and residuals are two closely related and easily confused measures of the deviation of an observed value of an element of a statistical sample from its "true value" (not necessarily observable). The error of an observation is the deviation of the observed value from the true value of a quantity of interest (for example, a population mean). The residual is the difference between the observed value and the estimated value of the quantity of interest (for example, a sample mean).
Intervalle de fluctuationEn mathématiques, un intervalle de fluctuation, aussi appelé intervalle de pari, permet de détecter un écart important par rapport à la valeur théorique pour une grandeur établie sur un échantillon. C'est un intervalle dans lequel la grandeur observée est censée se trouver avec une forte probabilité (souvent de l'ordre de 95 %). Le fait d'obtenir une valeur en dehors de cet intervalle s'interprète alors en mettant en cause la représentativité de l'échantillon ou la valeur théorique.
Loi normaleEn théorie des probabilités et en statistique, les lois normales sont parmi les lois de probabilité les plus utilisées pour modéliser des phénomènes naturels issus de plusieurs événements aléatoires. Elles sont en lien avec de nombreux objets mathématiques dont le mouvement brownien, le bruit blanc gaussien ou d'autres lois de probabilité. Elles sont également appelées lois gaussiennes, lois de Gauss ou lois de Laplace-Gauss des noms de Laplace (1749-1827) et Gauss (1777-1855), deux mathématiciens, astronomes et physiciens qui l'ont étudiée.
KurtosisEn théorie des probabilités et en statistique, le kurtosis (du nom féminin grec ancien κύρτωσις, « courbure »), aussi traduit par coefficient d’acuité, coefficient d’aplatissement et degré de voussure, est une mesure directe de l’acuité et une mesure indirecte de l'aplatissement de la distribution d’une variable aléatoire réelle. Il existe plusieurs mesures de l'acuité et le kurtosis correspond à la méthode de Pearson. C’est le deuxième des paramètres de forme, avec le coefficient d'asymétrie (les paramètres fondés sur les moments d’ordre 5 et plus n’ont pas de nom propre).
Pearson correlation coefficientIn statistics, the Pearson correlation coefficient (PCC) is a correlation coefficient that measures linear correlation between two sets of data. It is the ratio between the covariance of two variables and the product of their standard deviations; thus, it is essentially a normalized measurement of the covariance, such that the result always has a value between −1 and 1. As with covariance itself, the measure can only reflect a linear correlation of variables, and ignores many other types of relationships or correlations.
Intervalle de confiancevignette|Chaque ligne montre 20 échantillons tirés selon la loi normale de moyenne μ. On y montre l'intervalle de confiance de niveau 50% pour la moyenne correspondante aux 20 échantillons, marquée par un losange. Si l'intervalle contient μ, il est bleu ; sinon il est rouge. En mathématiques, plus précisément en théorie des probabilités et en statistiques, un intervalle de confiance encadre une valeur réelle que l’on cherche à estimer à l’aide de mesures prises par un procédé aléatoire.