Métrique (physique)En relativité restreinte et en relativité générale, une métrique est un invariant relativiste infinitésimal ayant la dimension d'une longueur. Mathématiquement, il s'agit d'un tenseur métrique relatif à la variété différentielle représentant l'espace-temps physique. En relativité générale, une métrique dans un référentiel contient toutes les informations sur la gravitation telle qu'elle y est perçue. Une métrique d'espace-temps s'exprime sous la forme d'une somme algébrique de carrés de formes différentielles linéaires.
Introduction aux mathématiques de la relativité généraleLes mathématiques de la relativité générale sont complexes. Dans la théorie du mouvement de Newton, la longueur d'un objet et la vitesse à laquelle le temps s'écoule restent constantes même lorsque l'objet accélère. Cela signifie que de nombreux problèmes de mécanique newtonienne peuvent être résolus uniquement en utilisant l'algèbre. Mais en relativité, la longueur d'un objet et la vitesse à laquelle le temps s'écoule changent sensiblement à mesure que la vitesse de l'objet se rapproche de la vitesse de la lumière.
Courbure scalaireEn géométrie riemannienne, la courbure scalaire (ou scalaire de Ricci) est un des outils de mesure de la courbure d'une variété riemannienne. Cet invariant riemannien est une fonction qui affecte à chaque point m de la variété un simple nombre réel noté R(m) ou s(m), portant une information sur la courbure intrinsèque de la variété en ce point. Ainsi, on peut décrire le comportement infinitésimal des boules et des sphères centrées en m à l'aide de la courbure scalaire.
Équation d'Einsteinvignette|Équation sur un mur à Leyde. L’'équation d'Einstein ou équation de champ d'Einstein' (en anglais, Einstein field equation ou EFE), publiée par Albert Einstein, pour la première fois le , est l'équation aux dérivées partielles principale de la relativité générale. C'est une équation dynamique qui décrit comment la matière et l'énergie modifient la géométrie de l'espace-temps. Cette courbure de la géométrie autour d'une source de matière est alors interprétée comme le champ gravitationnel de cette source.
Mathématiques de la relativité généraleLes mathématiques de la relativité générale se réfèrent à différentes structures et techniques mathématiques utilisées par la théorie de la relativité générale d'Albert Einstein. Les principaux outils utilisés dans cette théorie géométrique de la gravitation sont les champs tensoriels définis sur une variété pseudo-riemannienne représentant l'espace-temps.
Ricci-flat manifoldIn the mathematical field of differential geometry, Ricci-flatness is a condition on the curvature of a (pseudo-)Riemannian manifold. Ricci-flat manifolds are a special kind of Einstein manifold. In theoretical physics, Ricci-flat Lorentzian manifolds are of fundamental interest, as they are the solutions of Einstein's field equations in vacuum with vanishing cosmological constant. In Lorentzian geometry, a number of Ricci-flat metrics are known from works of Karl Schwarzschild, Roy Kerr, and Yvonne Choquet-Bruhat.
2-forme de courbureLa 2-forme de courbure est une forme différentielle induite par une forme de connexion sur un fibré principal dans le domaine de la géométrie différentielle. Soient : un groupe de Lie ; l'algèbre de Lie de ; une variété différentielle ; un -fibré principal sur ; la représentation adjointe de sur son algèbre de Lie ; le fibré adjoint de sur ; le produit extérieur sur les -formes différentielles réelles sur ; le crochet de Lie sur l'algèbre de Lie ; le produit wedge-crochet sur les -formes différentielles à valeurs en sur , défini par les combinaisons linéaires de : une 1-forme de connexion sur .
Champ gravitationnelEn physique classique, le champ gravitationnel ou champ de gravitation est un champ réparti dans l'espace et dû à la présence d'une masse susceptible d'exercer une influence gravitationnelle sur tout autre corps présent à proximité (immédiate ou pas). L'introduction de cette grandeur permet de s'affranchir du problème de la médiation de l'action à distance apparaissant dans l'expression de la force de gravitation universelle.
Tenseur de RicciDans le cadre de la relativité générale, le champ de gravitation est interprété comme une déformation de l'espace-temps. Celle-ci est exprimée à l'aide du tenseur de Ricci. Le tenseur de Ricci est un champ tensoriel d'ordre 2, obtenu comme la trace du tenseur de courbure complet. On peut le considérer comme le laplacien du tenseur métrique riemannien dans le cas des variétés riemaniennes. Le tenseur de Ricci occupe une place importante notamment dans l'équation d'Einstein, équation principale de la relativité générale.
Exact solutions in general relativityIn general relativity, an exact solution is a solution of the Einstein field equations whose derivation does not invoke simplifying assumptions, though the starting point for that derivation may be an idealized case like a perfectly spherical shape of matter. Mathematically, finding an exact solution means finding a Lorentzian manifold equipped with tensor fields modeling states of ordinary matter, such as a fluid, or classical non-gravitational fields such as the electromagnetic field.