Concept

Univers de Grothendieck

Concepts associés (6)
Ensemble transitif
En mathématiques, plus précisément en théorie des ensembles, un ensemble transitif est un ensemble dont tous les éléments sont aussi des parties de l'ensemble. Un ensemble X est dit transitif si tout élément y d’un élément x de X est lui-même élément de X c'est-à-dire si tout élément x de X est un sous-ensemble de X (en notant « ⊂ » l'inclusion au sens large) : ∀ x (x ∈ X ⇒ x ⊂ X) ce qui revient à (en notant ∪X l'union des éléments de X) : ∪X ⊂ X.
Univers de von Neumann
En théorie des ensembles, une des branches des mathématiques, l'univers de von Neumann, ou hiérarchie cumulative de von Neumann, est la classe notée V d'ensembles « héréditaires », tels que la relation d'appartenance sur ces ensembles soit bien fondée. Cette classe, qui est formalisée par la théorie des ensembles de Zermelo-Fraenkel (ZFC), est souvent utilisée pour fournir une interprétation ou une motivation des axiomes de ZFC. Ce concept est nommé d'après John von Neumann, bien qu'il ait été publié pour la première fois par Ernst Zermelo en 1930.
Univers (logique)
En mathématiques, et en particulier en théorie des ensembles et en logique mathématique, un univers est un ensemble (ou parfois une classe propre) ayant comme éléments tous les objets qu'on souhaite considérer dans un contexte donné. Structure (mathématiques) Dans de nombreuses utilisations élémentaires de la théorie des ensembles, on se place en réalité dans un ensemble général U (appelé parfois univers de référence), et les seuls ensembles considérés sont les éléments et les sous-ensembles de U ; c'est ce point de vue qui a amené Cantor à développer sa théorie en partant de U = R, l'ensemble des nombres réels.
Univers constructible
En mathématiques et en théorie des ensembles, l'univers constructible, ou l'univers constructible de Gödel, noté , est une classe d'ensembles qui peuvent entièrement être décrits en termes d'ensembles plus simples. Elle a été introduite en 1938 par Kurt Gödel dans son article sur . Il y montrait que cette classe est un de la théorie ZF et que l'axiome du choix et l'hypothèse généralisée du continu sont vrais dans ce modèle. Ceci prouve que ces deux propositions sont cohérentes avec les axiomes de ZF, à condition que ZF soit déjà cohérente.
Classe (mathématiques)
En mathématiques, la notion de classe généralise celle d'ensemble. Les deux termes sont parfois employés comme synonymes, mais la théorie des ensembles distingue ces deux notions. Un ensemble peut être vu comme une collection d'objets, mais aussi comme un objet mathématique, qui en particulier peut lui-même appartenir à un autre ensemble. Ce n'est pas forcément le cas d'une classe, qui est une collection d'objets que l'on peut définir, dont on peut donc parler, mais qui ne forme pas nécessairement un ensemble.
Catégorie des ensembles
En mathématiques, plus précisément en théorie des catégories, la catégorie des ensembles, notée Set ou Ens, est la catégorie dont les objets sont les ensembles, et dont les morphismes sont les applications d'un ensemble dans un autre. Sa définition est motivée par le fait qu'en théorie des ensembles usuelle, il n'existe pas d'« ensemble de tous les ensembles », car l'existence d'un tel objet résulterait en une contradiction logique : le paradoxe de Russell.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.