Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les chaînes de bits de comptage, les comités, la distribution des boules, les mains de poker et les coefficients, avec des exemples du principe de Pigeonhole et de la sélection des cartes.
S'inscrit dans les limites fondamentales de l'apprentissage par gradient sur les réseaux neuronaux, couvrant des sujets tels que le théorème binôme, les séries exponentielles et les fonctions génératrices de moments.
Explore l'inférence bayésienne pour les variables aléatoires gaussiennes, couvrant la distribution articulaire, les pdf marginaux et le classificateur Bayes.
Discute de la distribution de Dirichlet, de l'inférence bayésienne, de la moyenne postérieure et de la variance, des antécédents conjugués et de la distribution prédictive dans le modèle de Dirichlet-Multinôme.
Couvre les bases des équations différentielles partielles, en mettant l'accent sur la modélisation du transfert de chaleur et les méthodes de solution numérique.
Explore Latent Dirichlet Allocation, un modèle de sujet probabiliste pour le regroupement et l'analyse de documents à l'aide de distributions sur des mots et des sujets.