Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre la descente du gradient stochastique, la régression linéaire, la régularisation, l'apprentissage supervisé et la nature itérative de la descente du gradient.
Explore l'inférence bayésienne pour la précision dans le modèle gaussien avec la moyenne connue, en utilisant un précédent Gamma et en discutant des précédents subjectifs vs objectifs.
Introduit les bases de l'apprentissage automatique, y compris la collecte de données, l'évaluation des modèles et la normalisation des fonctionnalités.
Explore des sujets avancés dans l'apprentissage automatique, en se concentrant sur les extensions SVR et l'optimisation hyperparamétrique, y compris Nu-SVR et RVR.
Couvre l'interprétation des estimations du risque de validation croisée et la construction d'un prédicteur final à partir des résultats de validation croisée.
Introduit des techniques pour obtenir des estimations impartiales du risque des prédicteurs appris et leur application pour l'accord hyperparamétrique.
Introduit des techniques de clustering d'apprentissage automatique non supervisées telles que K-means, Gaussian Mixture Models et DBSCAN, expliquant leurs algorithmes et leurs applications.
Explore l'apprentissage en apprentissage profond pour les véhicules autonomes, couvrant les modèles prédictifs, RNN, ImageNet, et l'apprentissage de transfert.