Explore explicitement les méthodes de Runge-Kutta stabilisées et leur application aux problèmes inverses bayésiens, couvrant l'optimisation, l'échantillonnage et les expériences numériques.
Explore l'estimation des erreurs dans les méthodes numériques pour résoudre les équations différentielles ordinaires, en mettant l'accent sur l'impact des erreurs sur la précision et la stabilité de la solution.
Couvre la théorie du traitement du signal numérique, y compris l'échantillonnage, les méthodes de transformation, la numérisation et les contrôleurs PID.
Explore le transport optimal et les flux de gradient dans Rd, en mettant l'accent sur la convergence et le rôle des théorèmes de Lipschitz et Picard-Lindelf.