Explore la sélection des modèles dans la régression des moindres carrés, en abordant les défis de multicollinéarité et en introduisant des techniques de rétrécissement.
Introduit les bases de l'apprentissage automatique, y compris la collecte de données, l'évaluation des modèles et la normalisation des fonctionnalités.
Explore la construction de modèles dans la régression linéaire, couvrant des techniques comme la régression par étapes et la régression par crête pour traiter la multicolinéarité.
Explore la méthodologie MODNet pour les prévisions des biens matériels, en mettant l'accent sur la sélection des caractéristiques et l'apprentissage supervisé.
Explore l'apprentissage supervisé en mettant l'accent sur les méthodes de régression, y compris l'ajustement des modèles, la régularisation, la sélection des modèles et l'évaluation du rendement.
Explore la collecte de données, la sélection des caractéristiques, la construction de modèles et l'évaluation des performances dans l'apprentissage automatique, en mettant l'accent sur l'ingénierie des caractéristiques et la sélection des modèles.