Orientation (vector space)The orientation of a real vector space or simply orientation of a vector space is the arbitrary choice of which ordered bases are "positively" oriented and which are "negatively" oriented. In the three-dimensional Euclidean space, right-handed bases are typically declared to be positively oriented, but the choice is arbitrary, as they may also be assigned a negative orientation. A vector space with an orientation selected is called an oriented vector space, while one not having an orientation selected, is called .
Réseau réciproqueEn cristallographie, le réseau réciproque d'un réseau de Bravais est l'ensemble des vecteurs tels que : pour tous les vecteurs position du réseau de Bravais. Ce réseau réciproque est lui-même un réseau de Bravais, et son réseau réciproque est le réseau de Bravais de départ. Un cristal peut se décrire comme un réseau aux nœuds duquel se trouvent des motifs : atome, ion, molécule. Si l'on appelle les vecteurs définissant la maille élémentaire, ces vecteurs définissent une base de l'espace.
Symbole delta de KroneckerEn mathématiques, le symbole delta de Kronecker, également appelé symbole de Kronecker ou delta de Kronecker, est une fonction de deux variables qui est égale à 1 si celles-ci sont égales, et 0 sinon. Il est symbolisé par la lettre δ (delta minuscule) de l'alphabet grec. ou, en notation tensorielle : où δ et δ sont des vecteurs unitaires tels que seule la i-ème (respectivement la j-ème) coordonnée soit non nulle (et vaille donc 1).
Vecteur contravariant, covariant et covecteurUn vecteur contravariant est un vecteur, un vecteur covariant est une forme linéaire, encore appelé covecteur, ou encore vecteur dual. Et si on dispose d'un produit scalaire, on peut représenter une forme linéaire (= un vecteur covariant = un covecteur) par un vecteur à l'aide du théorème de représentation de Riesz (cette représentation dépend du choix du produit scalaire).
Dual spaceIn mathematics, any vector space has a corresponding dual vector space (or just dual space for short) consisting of all linear forms on together with the vector space structure of pointwise addition and scalar multiplication by constants. The dual space as defined above is defined for all vector spaces, and to avoid ambiguity may also be called the . When defined for a topological vector space, there is a subspace of the dual space, corresponding to continuous linear functionals, called the continuous dual space.
Forme linéaireEn algèbre linéaire, une forme linéaire sur un espace vectoriel est une application linéaire sur son corps de base. En dimension finie, elle peut être représentée par une matrice ligne qui permet d’associer à son noyau une équation cartésienne. Dans le cadre du calcul tensoriel, une forme linéaire est aussi appelée covecteur, en lien avec l’action différente des matrices de changement de base.
Matrice transposéeEn mathématiques, la matrice transposée (ou la transposée) d'une matrice est la matrice , également notée ou , obtenue en échangeant les lignes et les colonnes de . Plus précisément, si on note pour et pour les coefficients respectivement de et de alors pour tout on a . Par exemple, si alors On suppose ici que K est un anneau commutatif. On note et deux matrices quelconques de et un scalaire. L'application « transposition » est linéaire : La transposée de est . Par conséquent, l'application « transposition » est bijective.
Espace de Minkowskithumb|Représentation schématique de l'espace de Minkowski, qui montre seulement deux des trois dimensions spatiales. En géométrie et en relativité restreinte, l'espace de Minkowski du nom de son inventeur Hermann Minkowski, appelé aussi l'espace-temps de Minkowski ou parfois l'espace-temps de Poincaré-Minkowski, est un espace mathématique, et plus précisément un espace affine pseudo-euclidien à quatre dimensions, modélisant l'espace-temps de la relativité restreinte : les propriétés géométriques de cet espace correspondent à des propriétés physiques présentes dans cette théorie.