Équation de la chaleurEn mathématiques et en physique théorique, l'équation de la chaleur est une équation aux dérivées partielles parabolique, pour décrire le phénomène physique de conduction thermique, introduite initialement en 1807 par Joseph Fourier, après des expériences sur la propagation de la chaleur, suivies par la modélisation de l'évolution de la température avec des séries trigonométriques, appelés depuis séries de Fourier et transformées de Fourier, permettant une grande amélioration à la modélisation mathématique
Série de Fouriervignette|250px|Les quatre premières sommes partielles de la série de Fourier pour un signal carré. vignette|250px|Le premier graphe donne l'allure du graphe d'une fonction périodique ; l'histogramme donne les valeurs des modules des coefficients de Fourier correspondant aux différentes fréquences. En analyse mathématique, les séries de Fourier sont un outil fondamental dans l'étude des fonctions périodiques. C'est à partir de ce concept que s'est développée la branche des mathématiques connue sous le nom d'analyse harmonique.
InterférenceEn mécanique ondulatoire, les interférences sont la combinaison de deux ondes susceptibles d'interagir. Ce phénomène apparaît souvent en optique avec les ondes lumineuses, mais il s'obtient également avec des ondes électromagnétiques d'autres longueurs d'onde, ou avec d'autres types d'ondes comme des ondes sonores. À savoir aussi, le phénomène d'interférence se produit uniquement lors de la combinaison de deux ondes de même fréquence. L' onde se modélise par une fonction , étant la position dans l'espace et t étant le temps.
Réponse impulsionnellevignette|300px|right|Réponses impulsionnelles d'un système audio simple (de haut en bas) : impulsion originale à l'entrée, réponse après amplification des hautes fréquences et réponse après amplification des basses fréquences. En traitement du signal, la réponse impulsionnelle d'un processus est le signal de sortie qui est obtenu lorsque l'entrée reçoit une impulsion, c'est-à-dire une variation soudaine et brève du signal.
Vibrationthumb Une vibration est un mouvement d'oscillation mécanique autour d'une position d'équilibre stable ou d'une trajectoire moyenne. La vibration d'un système peut être libre ou forcée. Tout mouvement vibratoire peut être défini par les caractéristiques suivantes : un degré de liberté ; deux ou plusieurs degrés de liberté ; Une masse libre dans l'espace a naturellement six degrés de liberté : trois translations (notées Tx, Ty, Tz) ; trois rotations (notées Rx, Ry, Rz).
Polarisation (optique)La polarisation est une propriété qu'ont les ondes vectorielles (ondes qui peuvent osciller selon plus d'une orientation) de présenter une répartition privilégiée de l'orientation des vibrations qui les composent. Les ondes électromagnétiques, telles que la lumière, ou les ondes gravitationnelles ont ainsi des propriétés de polarisation. Les ondes mécaniques transverses dans les solides peuvent aussi être polarisées. Cependant, les ondes longitudinales (telles que les ondes sonores) ne sont pas concernées.
Transformation de Fourierthumb|Portrait de Joseph Fourier. En mathématiques, plus précisément en analyse, la transformation de Fourier est une extension, pour les fonctions non périodiques, du développement en série de Fourier des fonctions périodiques. La transformation de Fourier associe à toute fonction intégrable définie sur R et à valeurs réelles ou complexes, une autre fonction sur R appelée transformée de Fourier dont la variable indépendante peut s'interpréter en physique comme la fréquence ou la pulsation.
Équation de LaplaceEn analyse vectorielle, l'équation de Laplace est une équation aux dérivées partielles elliptique du second ordre, dont le nom est un hommage au physicien mathématicien Pierre-Simon de Laplace. Introduite pour les besoins de la mécanique newtonienne, l'équation de Laplace apparaît dans de nombreuses autres branches de la physique théorique : astronomie, électrostatique, mécanique des fluides, propagation de la chaleur, diffusion, mouvement brownien, mécanique quantique.
Hydrogéologievignette|droite|redresse=1.2|Bloc-diagramme d'un karst recoupé par une rivière. Lhydrogéologie (de hydro-, eau et géologie, étude de la terre), également nommée hydrologie souterraine et plus rarement géohydrologie, est la science qui étudie l'eau souterraine. Son domaine d'étude repose essentiellement sur deux branches des sciences de la Terre, la géologie et l'hydrologie, mais aussi sur de nombreuses autres branches comme la géostatistique, la physique, la chimie, la biologie, la géochimie, l'hydrochimie, la géophysique, l'hydrodynamique, l'hydraulique souterraine, l'analyse numérique ainsi que des techniques de modélisation.
Fourier analysisIn mathematics, Fourier analysis (ˈfʊrieɪ,_-iər) is the study of the way general functions may be represented or approximated by sums of simpler trigonometric functions. Fourier analysis grew from the study of Fourier series, and is named after Joseph Fourier, who showed that representing a function as a sum of trigonometric functions greatly simplifies the study of heat transfer. The subject of Fourier analysis encompasses a vast spectrum of mathematics.