Concept

Déplacement hyperbolique

En géométrie, les déplacements hyperboliques sont les isométries d'un espace hyperbolique préservant l'orientation, autrement dit les transformations de cet espace préservant les distances et les angles (orientés), et en particulier conservant les alignements. Pour la composition des applications, ces déplacements forment un groupe topologique, et même un groupe de Lie ; ce groupe caractérise l'espace, selon une approche développée par Felix Klein dans son programme d'Erlangen. Comme en géométrie euclidienne, on montre que les déplacements peuvent s'exprimer comme composés de symétries orthogonales (qui sont des antidéplacements) ; cela permet de les classifier (par exemple en en déterminant les points fixes). Tout déplacement du plan (euclidien ou hyperbolique) peut s'écrire comme composé de deux symétries orthogonales par rapport à deux droites (plus généralement, les déplacements d'un espace à n dimensions peuvent s'écrire comme composées de n ou n+1 symétries orthogonales par rapport à des hyperplans, selon que n est pair ou impair). Dans le cas du plan hyperbolique, on aboutit aux trois classes suivantes : Les deux axes se coupent (ou sont confondus) : comme dans le plan euclidien, on obtient une rotation de centre le point d’intersection et d’angle le double de l’angle des axes. Les deux axes sont parallèles asymptotes ; ils se coupent en un point à l’infini C. Les orbites sont des apeirogones inscrits dans des horocycles de centre C. On appelle ce déplacement une horolation de centre C. Les deux axes sont ultraparallèles. Le déplacement est une translation sur la perpendiculaire commune aux deux axes ; les autres points ont pour orbites des apeirogones inscrits dans des hypercycles, ayant pour axe cette perpendiculaire commune. alt=semi-circles as hyperbolic lines|droite|vignette|For some hyperbolic motions in the half-plane see the Ultraparallel theorem. Dans le modèle du demi-plan de Poincaré, on représente les points par leurs coordonnées cartésiennes (x,y) avec y > 0 ou par leurs coordonnées polaires (x = r cos a, y = r sin a) avec 0 < a < π, r > 0.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (2)
MATH-213: Differential geometry I - curves and surfaces
Ce cours est une introduction à la géométrie différentielle classique des courbes et des surfaces, principalement dans le plan et l'espace euclidien.
MATH-124: Geometry for architects I
Ce cours entend exposer les fondements de la géométrie à un triple titre : 1/ de technique mathématique essentielle au processus de conception du projet, 2/ d'objet privilégié des logiciels de concept
Séances de cours associées (7)
Géométrie euclidienne : opérations et constructions
Couvre les opérations et les constructions fondamentales en géométrie euclidienne, en se concentrant sur les interprétations algébriques et les constructions de règle et de compas.
Le discriminant : symétrie et orbites
Explore le rôle du discriminant dans les équations, la symétrie et les orbites dans les espaces mathématiques.
Introduction aux éléments euclidiens
Introduit les concepts fondamentaux de la géométrie euclidienne, en se concentrant sur les éléments d'Euclide et la structure logique des propositions géométriques.
Afficher plus
Publications associées (7)

T-5 configurations and hyperbolic systems

Carl Johan Peter Johansson, Riccardo Tione

In this paper, we study the rank-one convex hull of a differential inclusion associated to entropy solutions of a hyperbolic system of conservation laws. This was introduced in [B. Kirchheim, S. Muller and V. S(sic)ver & aacute;k, Studying Nonlinear PDE by ...
WORLD SCIENTIFIC PUBL CO PTE LTD2023

Notes on functions of hyperbolic type

Nicolas Monod

Functions of hyperbolic type encode representations on real or complex hyperbolic spaces, usually infinite-dimensional. These notes set up the complex case. As applications, we prove the existence of a non-trivial deformation family of representations of S ...
BELGIAN MATHEMATICAL SOC TRIOMPHE2020

Communication-aware adaptive parareal with application to a nonlinear hyperbolic system of partial dierential equations

Jan Sickmann Hesthaven, Allan Svejstrup Nielsen, Gilles Brunner

In the strong scaling limit, the performance of conventional spatial domain decomposition techniques for the parallel solution of PDEs saturates. When sub-domains become small, halo-communication and other overheard come to dominate. A potential path beyon ...
2017
Afficher plus
Concepts associés (3)
Transformation géométrique
Une transformation géométrique est une bijection d'une partie d'un ensemble géométrique dans lui-même. L'étude de la géométrie est en grande partie l'étude de ces transformations. Les transformations géométriques peuvent être classées selon la dimension de l'ensemble géométrique : principalement les transformations planes et les transformations dans l'espace. On peut aussi classer les transformations d'après leurs éléments conservés : Jusqu'à l'avant dernière, chacune de ces classes contient la précédente.
Demi-plan de Poincaré
Le demi-plan de Poincaré est un sous-ensemble des nombres complexes. Il a permis au mathématicien français Henri Poincaré d'éclairer les travaux du Russe Nikolaï Lobatchevski. Le demi-plan de Poincaré est formé par les nombres complexes de partie imaginaire strictement positive. Il fournit un exemple de géométrie non euclidienne, plus précisément de géométrie hyperbolique. On considère le demi-plan supérieur : On munit le demi-plan supérieur de la métrique : Cette métrique possède une courbure scalaire constante négative : On se ramène usuellement au cas d'une courbure unité, c’est-à-dire qu'on choisit : a = 1 pour simplifier les équations.
Transformation de Möbius
En mathématiques, et plus particulièrement en géométrie, les transformations de Möbius sont de manière générale des automorphismes du compactifié d'Alexandrov de noté , définies comme la composée d'un nombre fini d'inversions par rapport à des hyperplans ou des hypersphères.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.