In probability theory, a continuous stochastic process is a type of stochastic process that may be said to be "continuous" as a function of its "time" or index parameter. Continuity is a nice property for (the sample paths of) a process to have, since it implies that they are well-behaved in some sense, and, therefore, much easier to analyze. It is implicit here that the index of the stochastic process is a continuous variable. Some authors define a "continuous (stochastic) process" as only requiring that the index variable be continuous, without continuity of sample paths: in another terminology, this would be a continuous-time stochastic process, in parallel to a "discrete-time process". Given the possible confusion, caution is needed. Let (Ω, Σ, P) be a probability space, let T be some interval of time, and let X : T × Ω → S be a stochastic process. For simplicity, the rest of this article will take the state space S to be the real line R, but the definitions go through mutatis mutandis if S is Rn, a normed vector space, or even a general metric space. Given a time t ∈ T, X is said to be continuous with probability one at t if Given a time t ∈ T, X is said to be continuous in mean-square at t if E[|Xt|2] < +∞ and Continuity in probability Given a time t ∈ T, X is said to be continuous in probability at t if, for all ε > 0, Equivalently, X is continuous in probability at time t if Given a time t ∈ T, X is said to be continuous in distribution at t if for all points x at which Ft is continuous, where Ft denotes the cumulative distribution function of the random variable Xt. Sample continuous process X is said to be sample continuous if Xt(ω) is continuous in t for P-almost all ω ∈ Ω. Sample continuity is the appropriate notion of continuity for processes such as Itō diffusions. Feller-continuous process X is said to be a Feller-continuous process if, for any fixed t ∈ T and any bounded, continuous and Σ-measurable function g : S → R, Ex[g(Xt)] depends continuously upon x.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.