Groupe affineLes automorphismes d'un espace affine A constituent un groupe appelé groupe affine de A et noté GA(A). En notant E l'espace vectoriel qui dirige A, l'application qui à tout automorphisme u de A fait correspondre l'automorphisme f de E associé à u est un morphisme du groupe affine GA(A) dans le groupe linéaire GL(E). Son noyau forme le groupe des translations. GA(A) est isomorphe au produit semi-direct du groupe additif de E par GL(E). Il est donc engendré par les translations, les transvections et les dilatations.
Représentation trivialeEn mathématiques, dans le domaine de la théorie des représentations, une représentation triviale est une représentation d'un groupe G sur lequel tous les éléments de G agissent comme l'application identité de V. Une représentation triviale d'une algèbre associative ou d'une algèbre de Lie est une représentation d'algèbre (de Lie) pour laquelle tous les éléments de l'algèbre agissent comme l'application linéaire nulle (l'endomorphisme nul), qui envoie chaque élément de V sur le vecteur nul.
Richard BrauerRichard Dagobert Brauer ( à Berlin – à Belmont (Massachusetts)) est un mathématicien allemand et américain. Ses directeurs de thèse furent Issai Schur et Erhard Schmidt. Il a surtout travaillé en algèbre, mais a aussi apporté des contributions importantes en théorie des nombres. Il fut le fondateur de la . Son frère aîné Alfred Brauer est aussi un mathématicien. Son épouse Ilse Karger, née en 1901, est décédée en 1980. Caractère d'une représentation d'un groupe fini Groupe de Brauer Catégorie:Naissance en f
Représentation fidèleEn mathématiques, en particulier en théorie des représentations, une représentation fidèle ρ d'un groupe G sur un espace vectoriel V est une représentation linéaire dans laquelle différents éléments g de G sont représentés par des applications linéaires distinctes . En langage plus abstrait, cela signifie que le morphisme de groupe est injectif (et éventuellement bijectif). Alors que les représentations de G sur un corps K peuvent de facto être identifiés aux modules sur l'algèbre de groupe du groupe G, une représentation fidèle de G n'est pas nécessairement un module fidèle pour le groupe algèbre.
UnipotentEn mathématiques, un élément unipotent r d'un anneau unitaire R est un tel que r − 1 est un élément nilpotent ; en d'autres termes, (r − 1)n vaut zéro pour n assez grand. En particulier, une matrice carrée M est une matrice unipotente si et seulement si son polynôme caractéristique P(t) est une puissance de t − 1. Ainsi, toutes les valeurs propres d'une matrice unipotente valent 1. Le terme quasi-unipotent signifie qu'une certaine puissance de l'élément est unipotente.
Abus de notationEn mathématiques, un abus de notation est l'utilisation de symboles hors de leur usage d'origine de façon à résumer une expression, au risque de contrevenir à un formalisme en cours, voire d'obtenir une expression ambiguë. Par exemple, la notation , utilisée au pour désigner l'unité imaginaire, est abusive dans le formalisme actuel où le symbole radical est réservé aux nombres réels positifs. Un abus de notation courant est l'identification entre deux objets mathématiques différents, c'est-à-dire l'utilisation de l'un pour l'autre.
Wigner's classificationIn mathematics and theoretical physics, Wigner's classification is a classification of the nonnegative energy irreducible unitary representations of the Poincaré group which have either finite or zero mass eigenvalues. (Since this group is noncompact, these unitary representations are infinite-dimensional.) It was introduced by Eugene Wigner, to classify particles and fields in physics—see the article particle physics and representation theory. It relies on the stabilizer subgroups of that group, dubbed the Wigner little groups of various mass states.
Affine representationIn mathematics, an affine representation of a topological Lie group G on an affine space A is a continuous (smooth) group homomorphism from G to the automorphism group of A, the affine group Aff(A). Similarly, an affine representation of a Lie algebra g on A is a Lie algebra homomorphism from g to the Lie algebra aff(A) of the affine group of A. An example is the action of the Euclidean group E(n) on the Euclidean space En. Since the affine group in dimension n is a matrix group in dimension n + 1, an affine representation may be thought of as a particular kind of linear representation.
Isomorphisme de catégoriesEn théorie des catégories, deux catégories et sont isomorphes s'il existe deux foncteurs F : → et G : → tels que l'un est inverse de l'autre, c'est-à-dire tels que FG = 1D (le foncteur identité de ) et GF = 1C. Cette notion, assez restrictive, peut être élargie en la notion d'équivalence de catégories. Soit la catégorie des espaces topologiques munis d'une topologie d'Alexandroff, et la catégorie des ensembles munis d'un préordre.
Group schemeIn mathematics, a group scheme is a type of object from algebraic geometry equipped with a composition law. Group schemes arise naturally as symmetries of schemes, and they generalize algebraic groups, in the sense that all algebraic groups have group scheme structure, but group schemes are not necessarily connected, smooth, or defined over a field. This extra generality allows one to study richer infinitesimal structures, and this can help one to understand and answer questions of arithmetic significance.