Fibré principalEn topologie, de manière informelle, un fibré principal sur un espace topologique X est un espace ressemblant localement à un produit de X par un groupe topologique. En particulier, un fibré principal est un espace fibré, mais c'est bien plus encore. Il est muni d'un groupe, le groupe structural, décrivant la manière dont les trivialisations locales se recollent entre elles. La théorie des fibrés principaux recouvre la théorie des fibrés vectoriels, de leurs orientations, de leurs structures riemanniennes, de leurs structures symplectiques, etc.
Linear complex structureIn mathematics, a complex structure on a real vector space V is an automorphism of V that squares to the minus identity, −I. Such a structure on V allows one to define multiplication by complex scalars in a canonical fashion so as to regard V as a complex vector space. Every complex vector space can be equipped with a compatible complex structure, however, there is in general no canonical such structure. Complex structures have applications in representation theory as well as in complex geometry where they play an essential role in the definition of almost complex manifolds, by contrast to complex manifolds.
Théorie de jaugeEn physique théorique, une théorie de jauge est une théorie des champs basée sur un groupe de symétrie locale, appelé groupe de jauge, définissant une « invariance de jauge ». Le prototype le plus simple de théorie de jauge est l'électrodynamique classique de Maxwell. L'expression « invariance de jauge » a été introduite en 1918 par le mathématicien et physicien Hermann Weyl. La première théorie des champs à avoir une symétrie de jauge était la formulation de l'électrodynamisme de Maxwell en 1864 dans .
Variété parallélisableUne variété différentielle M de classe Ck est dite parallélisable si son fibré tangent est trivial, c'est-à-dire isomorphe, en tant que fibré vectoriel, à , où est un espace vectoriel de dimension Il revient au même de dire qu'il existe un espace vectoriel E et une forme différentielle telle que pour tout , est un isomorphisme d'espaces vectoriels ; ou encore qu'il existe champs de vecteurs linéairement indépendants en tout point de M, autrement dit un champ de repères. Un isomorphisme de fibrés vectoriels entre et s'appelle un parallèlisme.
Tenseur de torsionEn géométrie différentielle, la torsion constitue, avec la courbure, une mesure de la façon dont une base mobile évolue le long des courbes, et le tenseur de torsion en donne l'expression générale dans le cadre des variétés, c'est-à-dire des « espaces courbes » de toutes dimensions. La torsion se manifeste en géométrie différentielle classique comme une valeur numérique associée à chaque point d'une courbe de l'espace euclidien.
Connection (principal bundle)In mathematics, and especially differential geometry and gauge theory, a connection is a device that defines a notion of parallel transport on the bundle; that is, a way to "connect" or identify fibers over nearby points. A principal G-connection on a principal G-bundle P over a smooth manifold M is a particular type of connection which is compatible with the action of the group G. A principal connection can be viewed as a special case of the notion of an Ehresmann connection, and is sometimes called a principal Ehresmann connection.
Structure spinorielleEn géométrie différentielle, il est possible de définir sur certaines variétés riemanniennes la notion de structure spinorielle (qui se décline en structures Spin ou Spinc), étendant ainsi les considérations algébriques sur le groupe spinoriel et les spineurs. En termes imagés, il s'agit de trouver, dans le cadre des « espaces courbes », une géométrie « cachée » à l’œuvre derrière les concepts géométriques ordinaires. On peut aussi y voir une généralisation de la notion d'orientabilité et de changement d'orientation à une forme d'« orientabilité d'ordre supérieur ».
Espace classifiantEn mathématiques, un espace classifiant pour un groupe topologique G est la base d’un fibré principal particulier EG → BG appelé fibré universel, induisant tous les fibrés ayant ce groupe de structure sur n’importe quel CW-complexe X par (pullback). Dans le cas d’un groupe discret, la définition d’espace classifiant correspond à celle d’un espace d'Eilenberg-MacLane K(G, 1), c’est-à-dire un espace connexe par arcs dont tous les groupes d'homotopie sont triviaux en dehors du groupe fondamental (lequel est isomorphe à G).
Forme de connexionEn géométrie différentielle, une 1-forme de connexion est une forme différentielle sur un -fibré principal qui vérifie certains axiomes. La donnée d'une forme de connexion permet de parler, entre autres, de courbure, de torsion, de dérivée covariante, de relevé horizontal, de transport parallèle, d'holonomie et de théorie de jauge. La notion de forme de connexion est intimement reliée à la notion de connexion d'Ehresmann. Soient : un groupe de Lie ; l'élément identité de ; l'algèbre de Lie de ; la représentation adjointe de sur ; une variété différentielle ; un -fibré principal sur .
Fibré adjointEn géométrie différentielle, le fibré adjoint est un fibré vectoriel associé particulier d'un -fibré principal. Il joue un rôle important en théorie de jauge où les transformations de jauge infinitésimales, les vecteurs tangents à l'espace des formes de connexions et la 2-forme de courbure sont toutes des formes différentielles à valeurs dans le fibré adjoint. Soient : un groupe de Lie ; l'algèbre de Lie de ; une variété différentielle ; un -fibré principal sur ; l'action de groupe à droite de sur ; la représentation adjointe de sur son algèbre de Lie .