A time-variant system is a system whose output response depends on moment of observation as well as moment of input signal application. In other words, a time delay or time advance of input not only shifts the output signal in time but also changes other parameters and behavior. Time variant systems respond differently to the same input at different times. The opposite is true for time invariant systems (TIV). There are many well developed techniques for dealing with the response of linear time invariant systems, such as Laplace and Fourier transforms. However, these techniques are not strictly valid for time-varying systems. A system undergoing slow time variation in comparison to its time constants can usually be considered to be time invariant: they are close to time invariant on a small scale. An example of this is the aging and wear of electronic components, which happens on a scale of years, and thus does not result in any behaviour qualitatively different from that observed in a time invariant system: day-to-day, they are effectively time invariant, though year to year, the parameters may change. Other linear time variant systems may behave more like nonlinear systems, if the system changes quickly – significantly differing between measurements. The following things can be said about a time-variant system: It has explicit dependence on time. It does not have an impulse response in the normal sense. The system can be characterized by an impulse response except the impulse response must be known at each and every time instant. It is not stationary Linear-time variant (LTV) systems are the ones whose parameters vary with time according to previously specified laws. Mathematically, there is a well defined dependence of the system over time and over the input parameters that change over time. In order to solve time-variant systems, the algebraic methods consider initial conditions of the system i.e. whether the system is zero-input or non-zero input system.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.