Weak orderingIn mathematics, especially order theory, a weak ordering is a mathematical formalization of the intuitive notion of a ranking of a set, some of whose members may be tied with each other. Weak orders are a generalization of totally ordered sets (rankings without ties) and are in turn generalized by (strictly) partially ordered sets and preorders.
Ordre denseLa notion dordre dense est une notion de mathématiques, en lien avec la notion de relation d'ordre. Un ensemble ordonné (E, ≤) est dit dense en lui-même, ou plus simplement dense, si, pour tout couple (x, y) d'éléments de E tels que x < y il existe un élément z de E tel que x < z < y. Par exemple, tout corps totalement ordonné est dense en lui-même alors que l'anneau Z des entiers relatifs ne l'est pas.
IntransitivityIn mathematics, intransitivity (sometimes called nontransitivity) is a property of binary relations that are not transitive relations. This may include any relation that is not transitive, or the stronger property of antitransitivity, which describes a relation that is never transitive. A relation is transitive if, whenever it relates some A to some B, and that B to some C, it also relates that A to that C.
Relation asymétriqueEn mathématiques, une relation (binaire, interne) R est dite asymétrique si elle vérifie : ou encore, si son graphe est disjoint de celui de sa relation réciproque. L'asymétrie est parfois appelée « antisymétrie forte », par opposition à l'antisymétrie (usuelle, ou « faible »). En effet, une relation est asymétrique si et seulement si elle est à la fois antisymétrique et antiréflexive. les relations d'ordre strict, qui sont les relations transitives et asymétriques ; dans les entiers, la relation "est le successeur de" ; dans un ensemble de personnes, la relation « est enfant de » : personne n'est enfant d'un de ses enfants.
Matrice binaireUne matrice binaire est une matrice dont les coefficients sont soit 0, soit 1. En général ces coefficients sont les nombres de l'algèbre de Boole dans laquelle on appelle B l'ensemble constitué de deux éléments appelés valeurs de vérité {VRAI, FAUX}. Cet ensemble est aussi noté B = {1, 0} ou B = {⊤, ⊥}. On privilégie souvent la notation B = {1, 0}. Quand on programme des algorithmes utilisant ces matrices, la notation {VRAI, FAUX} peut coexister avec la notation {1, 0} car de nombreux langages acceptent ce polymorphisme.
PréordreEn mathématiques, un préordre est une relation binaire réflexive et transitive. C'est-à-dire que si E est un ensemble, une relation binaire sur E est un préordre lorsque : (réflexivité) ; (transitivité). Un ensemble préordonné est un ensemble muni d'un préordre, ou plus formellement un couple où désigne un ensemble et un préordre sur . Les ordres sont les préordres antisymétriques. Les relations d'équivalence sont les préordres symétriques. Dans un anneau commutatif, la relation « divise » est une relation de préordre.
Semigroup with involutionIn mathematics, particularly in abstract algebra, a semigroup with involution or a *-semigroup is a semigroup equipped with an involutive anti-automorphism, which—roughly speaking—brings it closer to a group because this involution, considered as unary operator, exhibits certain fundamental properties of the operation of taking the inverse in a group: uniqueness, double application "cancelling itself out", and the same interaction law with the binary operation as in the case of the group inverse.
Total relationIn mathematics, a binary relation R ⊆ X×Y between two sets X and Y is total (or left total) if the source set X equals the domain {x : there is a y with xRy }. Conversely, R is called right total if Y equals the range {y : there is an x with xRy }. When f: X → Y is a function, the domain of f is all of X, hence f is a total relation. On the other hand, if f is a partial function, then the domain may be a proper subset of X, in which case f is not a total relation.
Relation binaireEn mathématiques, une relation binaire entre deux ensembles E et F (ou simplement relation entre E et F) est définie par un sous-ensemble du produit cartésien E × F, soit une collection de couples dont la première composante est dans E et la seconde dans F. Cette collection est désignée par le graphe de la relation. Les composantes d'un couple appartenant au graphe d'une relation R sont dits en relation par R. Une relation binaire est parfois appelée correspondance entre les deux ensembles.
Relation bien fondéeEn mathématiques, une relation bien fondée (encore appelée relation noethérienne ou relation artinienne) est une relation binaire vérifiant l'une des deux conditions suivantes, équivalentes d'après l'axiome du choix dépendant (une version faible de l'axiome du choix) : pour toute partie non vide X de E, il existe un élément x de X n'ayant aucun R-antécédent dans X (un R-antécédent de x dans X est un élément y de X vérifiant yRx) ; condition de chaîne descendante : il n'existe pas de suite infinie (xn) d'élém