Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les propriétés stochastiques et la modélisation des séries chronologiques, couvrant l'autocovariance, la stationnarité, la densité spectrale, l'estimation, la prévision, les modèles ARCH et la modélisation multivariée.
Explore la transformée de Fourier, le filtrage de fréquence, la segmentation et l'estimation de la taille des particules à l'aide de techniques d'analyse d'images.
Introduit des outils de traitement de signaux statistiques pour les communications sans fil, mettant l'accent sur les applications pratiques et l'expérience pratique avec Python ou Matlab.
Couvre les bases du contrôle multivariable, y compris la modélisation du système, le contrôle de la température, et les stratégies optimales, soulignant l'importance d'envisager toutes les entrées et sorties simultanément.
Explore l'algorithme Kalman Predictor étendu et le filtre Kalman linéaire pour les systèmes de contrôle multivariables, en discutant des défis et des applications.
Explore la sélection de variables à travers des méthodes de filtrage et de corrélation dans l'apprentissage automatique, en mettant l'accent sur la quantification de la pertinence et la mesure des relations avec l'étiquette.
Explore la gestion du bruit corrélé dans les systèmes de contrôle multivariables, en mettant l'accent sur l'adaptation et l'évaluation des performances du filtre Kalman.
Explore le traitement adaptatif du signal, la descente de gradient et l'algorithme LMS pour un filtrage efficace et un entraînement au réseau neuronal.