QuadriqueEn mathématiques, une quadrique, ou surface quadratique, est une surface satisfaisant une équation cartésienne polynomiale de degré 2 à trois variables (notées généralement x, y et z) de la forme Ces surfaces sont classifiées par une équation réduite dans un repère orthonormé adapté en géométrie euclidienne, et en neuf classes non dégénérées à transformation linéaire près en géométrie affine. On peut également les étudier dans le cadre de la géométrie projective, qui simplifie et unifie complètement les résultats.
HyperboloïdeUn hyperboloïde est en géométrie une surface du second degré de l'espace euclidien. Il fait donc partie des quadriques, avec pour caractéristique principale de posséder un centre de symétrie et de s'étendre à l'infini. Les sections non triviales d'un hyperboloïde avec un plan sont des paraboles, des ellipses ou des hyperboles. On distingue deux types d'hyperboloïdes, connexes ou non, chaque partie connexe s'appelant une nappe. Le cône peut être vu comme une forme dégénérée d'hyperboloïde.
Tangente (géométrie)Tangente vient du latin tangere, toucher : en géométrie, la tangente à une courbe en un de ses points est une droite qui « touche » la courbe au plus près au voisinage de ce point. La courbe et sa tangente forment alors un angle nul en ce point. La notion de tangente permet d'effectuer des approximations : pour la résolution de certains problèmes qui demandent de connaître le comportement de la courbe au voisinage d'un point, on peut assimiler celle-ci à sa tangente. Ceci explique la parenté entre la notion de tangente et le calcul différentiel.