Hyperbole unitéEn géométrie, l'hyperbole unité est l'ensemble des points (x, y) du plan cartésien qui vérifient l'équation implicite x – y = 1. Dans l'étude des groupes orthogonaux indéfinis, l'hyperbole unité forme la base d'une longueur radiale alternative Alors que le cercle unité entoure son centre, l'hyperbole unité nécessite lhyperbole conjuguée y – x = 1 pour le compléter dans le plan. Cette paire d'hyperboles partage les asymptotes et .
Degenerate conicIn geometry, a degenerate conic is a conic (a second-degree plane curve, defined by a polynomial equation of degree two) that fails to be an irreducible curve. This means that the defining equation is factorable over the complex numbers (or more generally over an algebraically closed field) as the product of two linear polynomials. Using the alternative definition of the conic as the intersection in three-dimensional space of a plane and a double cone, a conic is degenerate if the plane goes through the vertex of the cones.
Translation of axesIn mathematics, a translation of axes in two dimensions is a mapping from an xy-Cartesian coordinate system to an x'y'-Cartesian coordinate system in which the x' axis is parallel to the x axis and k units away, and the y' axis is parallel to the y axis and h units away. This means that the origin O' of the new coordinate system has coordinates (h, k) in the original system. The positive x' and y' directions are taken to be the same as the positive x and y directions.
Faisceau (géométrie)En géométrie, un faisceau est une famille d'objets géométriques partageant une propriété commune, par exemple l'ensemble de droites passant par un même point dans le plan, ou l'ensemble de cercles passant par deux points dans le plan. Si la définition d'un faisceau est assez vague, la caractéristique commune est que le faisceau est complètement déterminé par deux de ses éléments. De façon analogue, un ensemble d'objets géométriques déterminés par trois éléments quelconques est appelé un fibré.
Rotation of axes in two dimensionsIn mathematics, a rotation of axes in two dimensions is a mapping from an xy-Cartesian coordinate system to an x′y′-Cartesian coordinate system in which the origin is kept fixed and the x′ and y′ axes are obtained by rotating the x and y axes counterclockwise through an angle . A point P has coordinates (x, y) with respect to the original system and coordinates (x′, y′) with respect to the new system. In the new coordinate system, the point P will appear to have been rotated in the opposite direction, that is, clockwise through the angle .
Pôle et polaireEn géométrie euclidienne, la polaire d'un point par rapport à deux droites sécantes du plan est une droite définie par conjugaison harmonique : les deux droites données, la droite joignant le point à leur intersection, et la polaire forment un faisceau harmonique ; le point est appelé pôle (de cette droite). Cette notion se généralise à celle de polaire par rapport à un cercle, puis par rapport à une conique. La relation entre pôle et polaire est en fait projective : elle est conservée par homographie.
Secteur hyperboliquedroite|200x200px En géométrie, un secteur hyperbolique est une région du plan cartésien délimitée par une hyperbole et deux rayons partant de l'origine vers celle-ci. Par exemple, les deux points et sur l'hyperbole équilatère , ou la région correspondante lorsque cette hyperbole est remise à l'échelle et que son orientation est modifiée par une rotation laissant le centre à l'origine, comme avec l'hyperbole unité. Un secteur hyperbolique en position standard part de et . Les secteurs hyperboliques sont à la base des fonctions hyperboliques.
Théorème de DandelinEn mathématiques, le théorème de Dandelin, ou théorème de Dandelin-Quetelet ou théorème belge sur la section conique, est un théorème portant sur les coniques. Le théorème de Dandelin énonce que, si une ellipse ou une hyperbole est obtenue comme section conique d'un cône de révolution par un plan, alors : il existe deux sphères à la fois tangentes au cône et au plan de la conique (de part et d'autre de ce plan pour l'ellipse et d'un même côté de ce plan pour l'hyperbole) ; les points de tangence des deux sphères au plan sont les foyers de la conique ; les directrices de la conique sont les intersections du plan de la conique avec les plans contenant les cercles de tangences des sphères avec le cône.
Director circleIn geometry, the director circle of an ellipse or hyperbola (also called the orthoptic circle or Fermat–Apollonius circle) is a circle consisting of all points where two perpendicular tangent lines to the ellipse or hyperbola cross each other. The director circle of an ellipse circumscribes the minimum bounding box of the ellipse. It has the same center as the ellipse, with radius , where and are the semi-major axis and semi-minor axis of the ellipse.
Théorème de l'angle inscrit et de l'angle au centrethumb|Figure 1 : L'angle AOB mesure le double de l'angle AMB et de l'angle ANB. thumb|Figure 2 : angle inscrit AMB obtus, angle au centre AOB rentrant. En géométrie euclidienne plane, plus précisément dans la géométrie du cercle, les théorèmes de l'angle inscrit et de l'angle au centre établissent des relations liant les angles inscrits et les angles au centre interceptant un même arc. Le théorème de l'angle au centre affirme que, dans un cercle, un angle au centre mesure le double d'un angle inscrit interceptant le même arc (figure 1 et 2, ).