Résumé
En mathématiques, la série harmonique est une série de nombres réels. C'est la série des inverses des entiers naturels non nuls. Elle tire son nom par analogie avec la moyenne harmonique, de la même façon que les séries arithmétiques et géométriques peuvent être mises en parallèle avec les moyennes arithmétiques et géométriques. Elle fait partie de la famille plus large des séries de Riemann, qui sont utilisées comme séries de référence : la nature d'une série est souvent déterminée en la comparant à une série de Riemann et en utilisant les théorèmes de comparaison. Le terme général (u) de la série harmonique est défini par On appelle n-ième nombre harmonique (noté classiquement H) la n-ième somme partielle de la série harmonique, qui est donc égale à En calculant les premières sommes partielles de la série harmonique, il apparaît que la suite de nombres obtenus est croissante, mais à croissance lente : on pourrait croire qu'il s'agit d'une série convergente. En fait, la série harmonique diverge, ses sommes partielles tendent vers +∞. Dans le tableau ci-dessus, à chaque fois qu'on multiplie la valeur de n par 10, il semble qu'on rajoute une constante à H, de l'ordre de 2,3 ≃ ln(10). Ce comportement apparent est de type logarithmique en n. C'est bien ce qu'on obtient en faisant une étude asymptotique plus poussée. La première démonstration de la divergence de la série harmonique est due à Nicole Oresme, parue dans Questiones super geometriam Euclidis (1360). Elle consiste à remarquer que : H = 1 + 1/2 + (1/3 + 1/4) ≥ 1 + 1/2 + (1/4 + 1/4) = 1 + 1/2 + 1/2 H = 1 + 1/2 + (1/3 + 1/4) + (1/5 + 1/6 + 1/7 + 1/8) ≥ 1 + 1/2 + (1/4 + 1/4) + (1/8 + 1/8 + 1/8 + 1/8) = 1 + 1/2 + 1/2 + 1/2 et ainsi de suite, les H d'indice une puissance de 2 augmentant indéfiniment. On peut aussi montrer que la suite (H) tend vers +∞ en remarquant que pour tout n, H – H ≥ 1/2, donc que cette suite n'est pas une suite de Cauchy. On peut également comparer la série harmonique à une série télescopique bien choisie Alors est le terme général d'une série divergente, à termes positifs, donc par comparaison, la série harmonique diverge elle aussi.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.