Hypothèse de RiemannEn mathématiques, l'hypothèse de Riemann est une conjecture formulée en 1859 par le mathématicien allemand Bernhard Riemann, selon laquelle les zéros non triviaux de la fonction zêta de Riemann ont tous une partie réelle égale à 1/2. Sa démonstration améliorerait la connaissance de la répartition des nombres premiers et ouvrirait des nouveaux domaines aux mathématiques. Cette conjecture constitue l'un des problèmes non résolus les plus importants des mathématiques du début du : elle est l'un des vingt-trois fameux problèmes de Hilbert proposés en 1900, l'un des sept problèmes du prix du millénaire et l'un des dix-huit problèmes de Smale.
Problème de BâleEn mathématiques, le problème de Bâle (connu parfois aussi sous le nom de problème de Mengoli) est un problème renommé de théorie des nombres, qui consiste à demander la valeur de la somme de la série convergente : Le problème a été résolu par Leonhard Euler, qui établit que cette somme vaut : et en donna une première preuve en 1735, puis une deuxième, plus rigoureuse, en 1741. Posé en premier par Pietro Mengoli en 1644, étudié 40 ans plus tard par Jacques Bernoulli né à Bâle, le problème résiste aux attaques des mathématiciens éminents de l'époque.
Série convergenteEn mathématiques, une série est dite convergente si la suite de ses sommes partielles a une limite dans l'espace considéré. Dans le cas contraire, elle est dite divergente. Pour des séries numériques, ou à valeurs dans un espace de Banach — c'est-à-dire un espace vectoriel normé complet —, il suffit de prouver la convergence absolue de la série pour montrer sa convergence, ce qui permet de se ramener à une série à termes réels positifs. Pour étudier ces dernières, il existe une large variété de résultats, tous fondés sur le principe de comparaison.
Convergence absolueEn mathématiques, une série numérique réelle ou complexe converge absolument si, par définition, la série des valeurs absolues (ou des modules) est convergente. Cette définition peut être étendue aux séries à valeurs dans un espace vectoriel normé et complet, soit un espace de Banach. Dans tous ces contextes, cette condition est suffisante pour assurer la convergence de la série elle-même. Par analogie, l'intégrale d'une fonction à valeurs réelles ou complexes converge absolument si, par définition, l'intégrale de la valeur absolue (ou du module) de la fonction est convergente (fonction dans L1).
Nombre harmoniqueEn mathématiques, le n-ième nombre harmonique est la somme des inverses des n premiers entiers naturels non nuls : Ce nombre rationnel est aussi égal à n fois l'inverse de la moyenne harmonique de ces entiers, ainsi qu'à la n-ième somme partielle de la série harmonique. Les nombres harmoniques ont été étudiés pendant l'Antiquité et sont importants dans plusieurs domaines de la théorie des nombres. Ils apparaissent dans de nombreux problèmes d'analyse combinatoire.
Prolongement analytiqueEn analyse complexe, la théorie du prolongement analytique détaille l'ensemble des propriétés et techniques relatives au prolongement des fonctions holomorphes (ou analytiques). Elle considère d'abord la question du prolongement dans le plan complexe. Puis elle aborde des formes plus générales d'extension qui permettent de prendre en compte les singularités et les complications topologiques qui les accompagnent. La théorie fait alors intervenir soit le concept assez ancien et peu opérant de fonction multiforme, soit le concept plus puissant de surface de Riemann.
Série (mathématiques)En mathématiques, la notion de série permet de généraliser la notion de somme finie. Étant donné une suite de terme général u, étudier la série de terme général u c'est étudier la suite obtenue en prenant la somme des premiers termes de la suite (u), autrement dit la suite de terme général S défini par : L'étude d'une série peut passer par la recherche d'une écriture simplifiée des sommes finies en jeu et par la recherche éventuelle d'une limite finie quand n tend vers l'infini.
Fonction zêta de Riemannvignette|upright=2|La fonction zêta de Riemann ζ(s) dans le plan complexe. La couleur d'un point s code la valeur de ζ(s) : des couleurs vives indiquent des valeurs proches de 0 et la nuance indique l'argument de la valeur. Le point blanc pour s = 1 est le pôle ; les points noirs sur l'axe réel négatif (demi-droite horizontale) et sur la droite critique Re(s) = 1/2 (droite verticale) sont les zéros. vignette|upright=2|Carte des couleurs utilisées dans la figure du dessus.
Nombre irrationnelUn nombre irrationnel est un nombre réel qui n'est pas rationnel, c'est-à-dire qu'il ne peut pas s'écrire sous la forme d'une fraction a/b, où a et b sont deux entiers relatifs (avec b non nul). Les nombres irrationnels peuvent être caractérisés de manière équivalente comme étant les nombres réels dont le développement décimal n'est pas périodique ou dont le développement en fraction continue est infini. On distingue, parmi les nombres irrationnels, deux sous-ensembles complémentaires : les nombres algébriques non rationnels et les nombres transcendants.
Loi de ZipfLa loi de Zipf est une observation empirique concernant la fréquence des mots dans un texte. Elle a pris le nom de son auteur, George Kingsley Zipf (1902-1950). Cette loi a d'abord été formulée par Jean-Baptiste Estoup et a été par la suite démontrée à partir de formules de Shannon par Benoît Mandelbrot. Elle est parfois utilisée en dehors de ce contexte, par exemple au sujet de la taille et du nombre des villes dans chaque pays, lorsque cette loi semble mieux répondre aux chiffres que la distribution de Pareto.