Application contractanteEn mathématiques et plus particulièrement en analyse, une application contractante, ou contraction, est une application qui « rapproche les » ou, plus précisément, une application k-lipschitzienne avec k < 1. Le théorème de point fixe le plus simple et le plus utilisé concerne les applications contractantes. Une application f d'un espace métrique (E, d) dans lui-même est dite k-contractante si 0 ≤ k < 1 et si, pour tout couple de points x et y de E, d(f(x), f(y)) ≤ kd(x, y).
Delta-2Delta-2 est un procédé d'accélération de la convergence de suites en analyse numérique, popularisé par le mathématicien Alexander Aitken en 1926. C'est l'un des algorithmes d'accélération de la convergence les plus populaires du fait de sa simplicité et de son efficacité. Une première forme de cet algorithme a été utilisée par Seki Kōwa (fin du ) pour calculer une approximation de π par la méthode des polygones d'Archimède.
Mesure imageEn théorie de la mesure, la mesure image est une mesure définie sur un espace mesurable et transférée sur un autre espace mesurable via une fonction mesurable. On se donne deux espaces mesurables et , une application mesurable et une mesure . La mesure image de μ par f est une mesure sur notée et définie par : Cette définition s'applique également aux mesures complexes signées. La formule de changement de variables est l'une des principales propriétés : Une fonction g sur X est intégrable par rapport à la mesure image fμ si et seulement si la fonction composée g∘ f est intégrable par rapport à la mesure μ.
TétrationLa tétration (ou encore nappe exponentielle, hyperpuissance, tour de puissances, super-exponentiation ou hyper4) est une « exponentiation itérée ». C'est le premier hyperopérateur après l'exponentiation. Le mot-valise tétration a été forgé par Reuben Goodstein sur la base du préfixe tétra- (quatre) et itération. La tétration est utilisée pour l'écriture des grands nombres. Elle suit l'addition, la multiplication et l'exponentiation comme indiqué ci-après : addition multiplication exponentiation tétration avec chaque fois b apparitions de la lettre a.
Dynamique holomorpheLa dynamique holomorphe est un domaine de l'analyse complexe et des systèmes dynamiques s'intéressant principalement à l'étude de l'itération des applications holomorphes. La dynamique holomorphe provient initialement de l'étude de la méthode de Newton faite par le mathématicien allemand Ernst Schröder dans les années 1870. Cette méthode, qui revient à itérer une certaine fraction rationnelle particulière, est ensuite généralisée à l'itération de fractions rationnelles quelconques.
Fonction d'AckermannDans la théorie de la récursivité, la fonction d'Ackermann (aussi appelée fonction d'Ackermann-Péter) est un exemple simple de fonction récursive non récursive primitive, trouvée en 1926 par Wilhelm Ackermann. Elle est souvent présentée sous la forme qu'en a proposée la mathématicienne Rózsa Péter, comme une fonction à deux paramètres entiers naturels comme arguments et qui retourne un entier naturel comme valeur, noté en général A(m, n).
Effet papillonvignette|Un graphique de l'attracteur étrange de Lorenz pour les valeurs ρ = 28, σ = 10, β = 8/3 « Effet papillon » est une expression qui résume une métaphore concernant le phénomène fondamental de sensibilité aux conditions initiales de la théorie du chaos. La formulation exacte qui en est à l'origine fut exprimée par Edward Lorenz lors d'une conférence scientifique en 1972, dont le titre était : vignette|Le battement d'ailes du papillon.