École de Copenhague (physique)vignette|Interprétation de Copenhague dans l'expérience de pensée du chat de Schrödinger : lors d'une désintégration radioactive, il se produit une ramification de l'état. Cependant, selon un principe aléatoire, l'une des deux branches s'effondre immédiatement après que la cohérence entre les états ait suffisamment diminué, par exemple à la suite d'une mesure. L’école de Copenhague ou interprétation de Copenhague est un courant de pensée qui donne une interprétation cohérente de la mécanique quantique.
Double-slit experimentIn modern physics, the double-slit experiment demonstrates that light and matter can satisfy the seemingly-incongruous classical definitions for both waves and particles, which is considered evidence for the fundamentally probabilistic nature of quantum mechanics. This type of experiment was first performed by Thomas Young in 1801, as a demonstration of the wave behavior of visible light. At that time it was thought that light consisted of either waves or particles.
Mécanique matricielleLa mécanique matricielle est une formulation de la mécanique quantique construite par Werner Heisenberg, Max Born et Pascual Jordan en 1925. La mécanique matricielle est la première définition complète et correcte de la mécanique quantique. Elle prolonge le modèle de Bohr en décrivant la manière dont se produisent les sauts quantiques, en interprétant les propriétés physiques des particules comme des matrices évoluant dans le temps.
Microscope à effet tunnelthumb|Atomes de silicium à la surface d'un cristal de carbure de silicium (SiC). Image obtenue à l'aide d'un STM. Le microscope à effet tunnel (en anglais, scanning tunneling microscope, STM) est inventé en 1981 par des chercheurs d'IBM, Gerd Binnig et Heinrich Rohrer, qui reçurent le prix Nobel de physique pour cette invention en 1986. C'est un microscope en champ proche qui utilise un phénomène quantique, l'effet tunnel, pour déterminer la morphologie et la densité d'états électroniques de surfaces conductrices ou semi-conductrices avec une résolution spatiale pouvant être égale ou inférieure à la taille des atomes.
Moment cinétique (mécanique quantique)En mécanique quantique le moment cinétique est défini comme un opérateur vectoriel (noté ) à trois composantes, correspondant chacune aux différentes dimensions de l'espace (opérateurs « scalaires »). Celles-ci obéissent entre elles à certaines relations de commutation. Ainsi, alors qu'en mécanique classique les trois composantes du moment cinétique peuvent être simultanément mesurées, ceci est impossible dans le cadre quantique.
Oscillateur harmoniqueUn oscillateur harmonique est un oscillateur idéal dont l'évolution au cours du temps est décrite par une fonction sinusoïdale, dont la fréquence ne dépend que des caractéristiques du système et dont l'amplitude est constante. Ce modèle mathématique décrit l'évolution de n'importe quel système physique au voisinage d'une position d'équilibre stable, ce qui en fait un outil transversal utilisé dans de nombreux domaines : mécanique, électricité et électronique, optique. Il néglige les forces dissipatives (frottement par exemple).
Paradoxe EPRLe paradoxe EPR, abréviation de Einstein-Podolsky-Rosen, est une expérience de pensée, élaborée par Albert Einstein, Boris Podolsky et Nathan Rosen, et présentée dans un article de 1935, dont le but premier était de réfuter l'interprétation de l'école de Copenhague de la physique quantique. Ce paradoxe met en évidence des corrélations de mesures d'objets quantiques intriqués à une distance arbitrairement grande. Cela semble, a priori, incompatible soit avec le principe de localité, ou cela indique que le formalisme de la mécanique quantique est incomplet.
Momentum operatorIn quantum mechanics, the momentum operator is the operator associated with the linear momentum. The momentum operator is, in the position representation, an example of a differential operator. For the case of one particle in one spatial dimension, the definition is: where ħ is Planck's reduced constant, i the imaginary unit, x is the spatial coordinate, and a partial derivative (denoted by ) is used instead of a total derivative (d/dx) since the wave function is also a function of time. The "hat" indicates an operator.
ObservableUne observable est l'équivalent en mécanique quantique d'une grandeur physique en mécanique classique, comme la position, la quantité de mouvement, le spin, l'énergie, etc. Ce terme provient d'une expression utilisée par Werner Heisenberg dans ses travaux sur la mécanique des matrices, où il parlait de beobachtbare Grösse (quantité observable), et où il insistait sur la nécessité d'une définition opérationnelle d'une grandeur physique, qui prend mathématiquement la forme d'un opérateur.
Équation du mouvementL'équation du mouvement est une équation mathématique décrivant le mouvement d'un objet physique. En général, l'équation du mouvement comprend l'accélération de l’objet en fonction de sa position, de sa vitesse, de sa masse et de toutes variables affectant l'une de celles-ci. Cette équation est surtout utilisée en mécanique classique et est normalement représentée sous la forme de coordonnées sphériques, coordonnées cylindriques ou coordonnées cartésiennes et respecte les lois du mouvement de Newton.