Adhérence (mathématiques)En topologie, l'adhérence d'une partie d'un espace topologique est le plus petit ensemble fermé contenant cette partie. Lorsque l'espace est métrisable, c'est aussi l'ensemble des limites de suites convergentes à valeurs dans cette partie. Dans un espace topologique E, l'adhérence d'une partie X, notée , est le « plus petit » (au sens de l'inclusion) fermé contenant X. L'existence d'un tel fermé est claire : il existe au moins un fermé contenant X, à savoir l'espace E lui-même ; d'autre part, l'intersection de tous les fermés contenant X est un fermé contenant X, et est le plus petit ayant cette propriété.
Point d'accumulation (mathématiques)En mathématiques, un point d'accumulation d'une partie A d'un espace topologique E est un point x de E qui peut être « approché » par des points de A au sens où chaque voisinage de x – pour la topologie de E – contient un point de A distinct de x. Un tel point x n'est pas nécessairement un point de A. Ce concept généralise la notion de limite, et permet de définir des notions comme les espaces fermés et l'adhérence. De fait, pour qu'un espace soit fermé, il faut et il suffit qu'il contienne tous ses points d'accumulation.
Topologie de ZariskiEn géométrie algébrique et en théorie des catégories, le terme topologie de Zariski peut désigner quatre notions proches : une certaine topologie définie sur une variété algébrique. Les fermés de cette topologie sont les ensembles algébriques ; une topologie définie de manière analogue sur le spectre premier d'un anneau commutatif ; une topologie définie sur un schéma, qui, localement, provient de la topologie de Zariski définie sur un spectre d'anneau ; une topologie de Grothendieck sur un site.
Espace totalement discontinuEn mathématiques, plus précisément en topologie, un espace totalement discontinu est un espace topologique qui est « le moins connexe possible » au sens où il n'a pas de partie connexe non triviale : dans tout espace topologique, l'ensemble vide et les singletons sont connexes ; dans un espace totalement discontinu, ce sont les seules parties connexes. Un exemple populaire d'espace totalement discontinu est l'ensemble de Cantor. Un autre exemple, important en théorie algébrique des nombres, est le corps Qp des nombres p-adiques.
Espace régulierEn mathématiques, un espace régulier est un espace topologique vérifiant les deux conditions de séparation suivantes : T : l'espace est séparé ; T : on peut séparer un point x et un fermé ne contenant pas x par deux ouverts disjoints. vignette|Le point x et le fermé F sont respectivement inclus dans les ouverts U et V, qui sont disjoints. Soit E un espace topologique (non nécessairement séparé).
Espace séparéEn mathématiques, un espace séparé, dit aussi espace de Hausdorff, est un espace topologique dans lequel deux points distincts quelconques admettent toujours des voisinages disjoints. Cette condition est aussi appelée axiome T2 au sein des axiomes de séparation. L'appellation fait référence à Felix Hausdorff, mathématicien allemand et l'un des fondateurs de la topologie, qui avait inclus cette condition dans sa définition originale d'espace topologique.
PrébaseEn mathématiques, plus précisément en topologie, une prébase A d'une topologie T sur un ensemble X est un ensemble de parties de X qui engendre T, c'est-à-dire tel que T soit la plus petite topologie sur X pour laquelle tous les éléments de A sont des ouverts. Un ensemble de parties d'un ensemble X est donc toujours une prébase d'une certaine topologie sur X (celle qu'il engendre), ce qui est une différence avec la notion de base d'une topologie : un ensemble de parties de X n'est une base d'une certaine topologie que si l'intersection de deux éléments quelconques de cet ensemble est une union d'éléments de ce même ensemble.
Specialization (pre)orderIn the branch of mathematics known as topology, the specialization (or canonical) preorder is a natural preorder on the set of the points of a topological space. For most spaces that are considered in practice, namely for all those that satisfy the T0 separation axiom, this preorder is even a partial order (called the specialization order). On the other hand, for T1 spaces the order becomes trivial and is of little interest. The specialization order is often considered in applications in computer science, where T0 spaces occur in denotational semantics.
Convergence spaceIn mathematics, a convergence space, also called a generalized convergence, is a set together with a relation called a that satisfies certain properties relating elements of X with the family of filters on X. Convergence spaces generalize the notions of convergence that are found in point-set topology, including metric convergence and uniform convergence. Every topological space gives rise to a canonical convergence but there are convergences, known as , that do not arise from any topological space.
Kuratowski closure axiomsIn topology and related branches of mathematics, the Kuratowski closure axioms are a set of axioms that can be used to define a topological structure on a set. They are equivalent to the more commonly used open set definition. They were first formalized by Kazimierz Kuratowski, and the idea was further studied by mathematicians such as Wacław Sierpiński and António Monteiro, among others. A similar set of axioms can be used to define a topological structure using only the dual notion of interior operator.