Fiber product of schemesIn mathematics, specifically in algebraic geometry, the fiber product of schemes is a fundamental construction. It has many interpretations and special cases. For example, the fiber product describes how an algebraic variety over one field determines a variety over a bigger field, or the pullback of a family of varieties, or a fiber of a family of varieties. Base change is a closely related notion. The of schemes is a broad setting for algebraic geometry.
Smooth morphismIn algebraic geometry, a morphism between schemes is said to be smooth if (i) it is locally of finite presentation (ii) it is flat, and (iii) for every geometric point the fiber is regular. (iii) means that each geometric fiber of f is a nonsingular variety (if it is separated). Thus, intuitively speaking, a smooth morphism gives a flat family of nonsingular varieties. If S is the spectrum of an algebraically closed field and f is of finite type, then one recovers the definition of a nonsingular variety.
Système d'équations algébriquesEn mathématiques, un système d'équations algébriques est un ensemble d'équations polynomiales f1 = 0..., fh = 0 où les fi sont des polynômes de plusieurs variables (ou indéterminées), x1..., xn, à coefficients pris dans un corps ou un anneau k. Une « solution » est un ensemble de valeurs à substituer aux indéterminées annulant toutes les équations du système. Généralement les solutions peuvent être cherchées dans une extension du corps k comme la clôture algébrique de ce corps (ou la clôture algébrique du corps des fractions de k celui-ci est un anneau).
Théorie de l'éliminationEn algèbre commutative et en géométrie algébrique, la théorie de l'élimination traite de l'approche algorithmique de l'élimination de variables entre polynômes. Le cas linéaire est maintenant couramment traité par élimination de Gauss, plus efficace que la méthode de Cramer. De même, des algorithmes d'élimination s'appuient sur des calculs de bases de Gröbner, alors qu'il existe des publications anciennes sur divers types d'« éliminants », comme le résultant pour trouver les racines communes à deux polynômes, le discriminant, etc.
Étale morphismIn algebraic geometry, an étale morphism (etal) is a morphism of schemes that is formally étale and locally of finite presentation. This is an algebraic analogue of the notion of a local isomorphism in the complex analytic topology. They satisfy the hypotheses of the implicit function theorem, but because open sets in the Zariski topology are so large, they are not necessarily local isomorphisms. Despite this, étale maps retain many of the properties of local analytic isomorphisms, and are useful in defining the algebraic fundamental group and the étale topology.
Morphisme platEn géométrie algébrique, un morphisme de schémas peut être vu comme une famille de schémas paramétrée par les points de Y. La notion de platitude de f est une sorte de continuité de cette famille. Un morphisme est dit plat en un point x de X si l'homomorphisme d'anneaux induit par f est plat. On dit que f est un morphisme plat s'il est plat en tout point de X. On dit que f est fidèlement plat s'il est de plus surjectif. Si est un faisceau quasi-cohérent sur X.
Ordre monomialEn mathématiques, un ordre monomial est un ordre total sur l'ensemble des monômes d'un anneau de polynômes donné, compatible avec la multiplication, c'est-à-dire : Pour tout monôme , si deux monômes et satisfont selon l'ordre monomial, alors . Les ordres monomiaux sont le plus souvent utilisés pour le calcul des bases de Gröbner et la division multivariée. En particulier, la propriété dêtre une base de Gröbner est toujours relative à un ordre monomial spécifique.
Théorème des syzygies de HilbertLe théorème des syzygies est un important résultat mathématiques sur la théorie des anneaux, plus spécifiquement des anneaux de polynômes. Il joue également un rôle historique considérable, en ce qu'il a motivé et orienté le développement de la géométrie algébrique au début du . Il est dû au mathématicien allemand David Hilbert qui l'a démontré en 1890, posant avec le théorème de la base et le théorème des zéros les fondements de l'étude moderne des anneaux de polynômes.