Introduit des variables instrumentales pour résoudre les problèmes d'endogenèse, en utilisant des exemples pour illustrer les applications pratiques et les exigences d'essai.
Couvre les variables instrumentales, abordant les problèmes d'endogénéité dans l'analyse de régression à travers des techniques d'estimation et des exemples pratiques.
Introduit la méthode généralisée des moments (GMM) en économétrie, en se concentrant sur son application dans les modèles destimation des variables instrumentales et de tarification des actifs.
Explore comment les variables instrumentales corrigent les biais à partir des erreurs de mesure et de la causalité inverse dans les modèles de régression.
Couvre les bases de la régression linéaire, y compris l'OLS, l'hétéroskédasticité, l'autocorrélation, les variables instrumentales, l'estimation maximale de la probabilité, l'analyse des séries chronologiques et les conseils pratiques.
Couvre les bases de la régression linéaire, des variables instrumentales, de l'hétéroscédasticité, de l'autocorrélation et de l'estimation du maximum de vraisemblance.
Explore l'analyse de séries chronologiques multivariées, la cointégration, la prévision avec les modèles ARMA, et les applications pratiques dans l'analyse des taux d'intérêt.
Introduit la Méthode Généralisée des Moments (GMM), une approche polyvalente pour l'estimation basée sur les restrictions de temps, avec des applications dans les modèles de tarification des actifs.