Algorithme de triUn algorithme de tri est, en informatique ou en mathématiques, un algorithme qui permet d'organiser une collection d'objets selon une relation d'ordre déterminée. Les objets à trier sont des éléments d'un ensemble muni d'un ordre total. Il est par exemple fréquent de trier des entiers selon la relation d'ordre usuelle « est inférieur ou égal à ». Les algorithmes de tri sont utilisés dans de très nombreuses situations. Ils sont en particulier utiles à de nombreux algorithmes plus complexes dont certains algorithmes de recherche, comme la recherche dichotomique.
Tri rapideEn informatique, le tri rapide ou tri pivot (en anglais quicksort) est un algorithme de tri inventé par C.A.R. Hoare en 1961 et fondé sur la méthode de conception diviser pour régner. Il est généralement utilisé sur des tableaux, mais peut aussi être adapté aux listes. Dans le cas des tableaux, c'est un tri en place mais non stable. La complexité moyenne du tri rapide pour n éléments est proportionnelle à n log n, ce qui est optimal pour un tri par comparaison, mais la complexité dans le pire des cas est quadratique.
Tri fusionEn informatique, le tri fusion, ou tri dichotomique, est un algorithme de tri par comparaison stable. Sa complexité temporelle pour une entrée de taille n est de l'ordre de n log n, ce qui est asymptotiquement optimal. Ce tri est basé sur la technique algorithmique diviser pour régner. L'opération principale de l'algorithme est la fusion, qui consiste à réunir deux listes triées en une seule. L'efficacité de l'algorithme vient du fait que deux listes triées peuvent être fusionnées en temps linéaire.
Complexité en tempsEn algorithmique, la complexité en temps est une mesure du temps utilisé par un algorithme, exprimé comme fonction de la taille de l'entrée. Le temps compte le nombre d'étapes de calcul avant d'arriver à un résultat. Habituellement, le temps correspondant à des entrées de taille n est le temps le plus long parmi les temps d’exécution des entrées de cette taille ; on parle de complexité dans le pire cas. Les études de complexité portent dans la majorité des cas sur le comportement asymptotique, lorsque la taille des entrées tend vers l'infini, et l'on utilise couramment les notations grand O de Landau.
Tri par tasthumb|300px|Animation montrant le fonctionnement du tri par tas (Heapsort). En informatique, le tri par tas est un algorithme de tri par comparaisons. Cet algorithme est de complexité asymptotiquement optimale, c'est-à-dire que l'on démontre qu'aucun algorithme de tri par comparaison ne peut avoir de complexité asymptotiquement meilleure. Sa complexité est proportionnelle à où est la longueur du tableau à trier.
Comparison sortA comparison sort is a type of sorting algorithm that only reads the list elements through a single abstract comparison operation (often a "less than or equal to" operator or a three-way comparison) that determines which of two elements should occur first in the final sorted list. The only requirement is that the operator forms a total preorder over the data, with: if a ≤ b and b ≤ c then a ≤ c (transitivity) for all a and b, a ≤ b or b ≤ a (connexity). It is possible that both a ≤ b and b ≤ a; in this case either may come first in the sorted list.
Tri par sélectionLe tri par sélection (ou tri par extraction) est un algorithme de tri par comparaison. Cet algorithme est simple, mais considéré comme inefficace car il s'exécute en temps quadratique en le nombre d'éléments à trier, et non en temps pseudo linéaire. Sur un tableau de n éléments (numérotés de 0 à n-1 , attention un tableau de 5 valeurs (5 cases) sera numéroté de 0 à 4 et non de 1 à 5), le principe du tri par sélection est le suivant : rechercher le plus petit élément du tableau, et l'échanger avec l'élément d'indice 0 ; rechercher le second plus petit élément du tableau, et l'échanger avec l'élément d'indice 1 ; continuer de cette façon jusqu'à ce que le tableau soit entièrement trié.
Comparaison asymptotiqueEn mathématiques, plus précisément en analyse, la comparaison asymptotique est une méthode consistant à étudier la vitesse de croissance d'une fonction au voisinage d'un point ou à l'infini, en la comparant à celle d'une autre fonction considérée comme plus « simple ». Celle-ci est souvent choisie sur une échelle de référence, contenant en général au moins certaines fonctions dites élémentaires, en particulier les sommes et produits de polynômes, d'exponentielles et de logarithmes.
Tri à bullesvignette|Visualisation statique du tri : les étapes vont de gauche à droite. À chaque étape une permutation est faite. La couleur la plus foncée a le plus de valeur et trouve sa place définitive (en bas) en premier. Le tri à bulles ou tri par propagation est un algorithme de tri. Il consiste à comparer répétitivement les éléments consécutifs d'un tableau, et à les permuter lorsqu'ils sont mal triés. Il doit son nom au fait qu'il déplace rapidement les plus grands éléments en fin de tableau, comme des bulles d'air qui remonteraient rapidement à la surface d'un liquide.
In-place algorithmIn computer science, an in-place algorithm is an algorithm that operates directly on the input data structure without requiring extra space proportional to the input size. In other words, it modifies the input in place, without creating a separate copy of the data structure. An algorithm which is not in-place is sometimes called not-in-place or out-of-place. In-place can have slightly different meanings. In its strictest form, the algorithm can only have a constant amount of extra space, counting everything including function calls and pointers.