Théorie des ensembles non bien fondésLa théorie des ensembles non bien fondés est une variante de la théorie axiomatique des ensembles qui permet aux ensembles de s'appartenir les uns aux autres sans limite. Autrement dit, c'est une théorie des ensembles qui ne satisfait pas l'axiome de fondation. Plus précisément, dans la théorie des ensembles non bien fondés, l'axiome de fondation de ZFC est remplacé par un axiome impliquant sa négation.
Axiome de MartinEn théorie des ensembles, laxiome de Martin', introduit par Donald A. Martin et Robert M. Solovay en 1970, est un énoncé indépendant de ZFC, l'axiomatique usuelle de la théorie des ensembles. C'est une conséquence de l'hypothèse du continu, mais l'axiome de Martin est également cohérent avec la négation de celle-ci. Informellement, l'axiome de Martin affirme que tous les cardinaux strictement inférieurs à se comportent comme . C'est une généralisation du . Soit un cardinal.
Problème de SouslinEn mathématiques, le problème de Souslin est une question sur les ensembles totalement ordonnés, posée par Mikhaïl Souslin dans un article publié en 1920 peu après sa mort. Étant donné un ensemble non vide S totalement ordonné tel que : S n'a pas de plus grand ni de plus petit élément ; l'ordre sur S est dense (c'est-à-dire qu'entre deux éléments distincts de S il y en a toujours au moins un troisième) ; toute partie non vide majorée admet une borne supérieure, et toute partie non vide minorée admet une borne inférieure ; toute famille d'intervalles ouverts non vides de S deux à deux disjoints est dénombrable (c'est la condition de chaîne dénombrable), existe-t-il nécessairement un isomorphisme pour l'ordre entre S et la droite réelle ? La réponse par l'affirmative constitue ce qui est connu comme l'hypothèse de Souslin.
Mathématiques à reboursLes mathématiques à rebours sont une branche des mathématiques qui pourrait être définie simplement par l'idée de « remonter aux axiomes à partir des théorèmes », contrairement au sens habituel (des axiomes vers les théorèmes). Un peu plus précisément, il s'agit d'évaluer la robustesse logique d'un ensemble de résultats mathématiques usuels en déterminant exactement quels axiomes sont nécessaires et suffisants pour les prouver. Le domaine a été créé par Harvey Friedman dans son article « Some systems of second order arithmetic and their use ».
Set-builder notationIn set theory and its applications to logic, mathematics, and computer science, set-builder notation is a mathematical notation for describing a set by enumerating its elements, or stating the properties that its members must satisfy. Defining sets by properties is also known as set comprehension, set abstraction or as defining a set's intension. Set (mathematics)#Roster notation A set can be described directly by enumerating all of its elements between curly brackets, as in the following two examples: is the set containing the four numbers 3, 7, 15, and 31, and nothing else.
Paradoxes of set theoryThis article contains a discussion of paradoxes of set theory. As with most mathematical paradoxes, they generally reveal surprising and counter-intuitive mathematical results, rather than actual logical contradictions within modern axiomatic set theory. Set theory as conceived by Georg Cantor assumes the existence of infinite sets. As this assumption cannot be proved from first principles it has been introduced into axiomatic set theory by the axiom of infinity, which asserts the existence of the set N of natural numbers.
Extension by definitionsIn mathematical logic, more specifically in the proof theory of first-order theories, extensions by definitions formalize the introduction of new symbols by means of a definition. For example, it is common in naive set theory to introduce a symbol for the set that has no member. In the formal setting of first-order theories, this can be done by adding to the theory a new constant and the new axiom , meaning "for all x, x is not a member of ". It can then be proved that doing so adds essentially nothing to the old theory, as should be expected from a definition.
Whitehead problemIn group theory, a branch of abstract algebra, the Whitehead problem is the following question: Is every abelian group A with Ext1(A, Z) = 0 a free abelian group? Saharon Shelah proved that Whitehead's problem is independent of ZFC, the standard axioms of set theory. Assume that A is an abelian group such that every short exact sequence must split if B is also abelian. The Whitehead problem then asks: must A be free? This splitting requirement is equivalent to the condition Ext1(A, Z) = 0.
Uniformization (set theory)In set theory, a branch of mathematics, the axiom of uniformization is a weak form of the axiom of choice. It states that if is a subset of , where and are Polish spaces, then there is a subset of that is a partial function from to , and whose domain (the set of all such that exists) equals Such a function is called a uniformizing function for , or a uniformization of . To see the relationship with the axiom of choice, observe that can be thought of as associating, to each element of , a subset of .
Thoralf SkolemThoralf Albert Skolem (1887-1963) est un mathématicien et logicien norvégien. Il est particulièrement connu pour les travaux en logique mathématique et théorie des ensembles qui portent à présent son nom, comme le théorème de Löwenheim-Skolem ou la notion de skolémisation. Bien que le père de Skolem ait été enseignant en école primaire, la plupart des membres de sa famille étaient des agriculteurs. Skolem a fréquenté l'école secondaire à Kristiania (plus tard renommé Oslo), en passant par les examens d'entrée à l'université en 1905.