Arithmétique de RobinsonL'arithmétique de Robinson introduite en 1950 par Raphael Robinson est une théorie du premier ordre pour l'arithmétique des entiers naturels, qui est finiment axiomatisable. Ses axiomes sont essentiellement ceux de l'arithmétique de Peano sans le schéma d'axiomes de récurrence. L'arithmétique de Robinson suffit pour le théorème d'incomplétude de Gödel-Rosser et pour le théorème de Church (indécidabilité du problème de la décision), au sens où l'arithmétique de Robinson, et même toute théorie axiomatique dans le langage de l'arithmétique qui est récursive et cohérente et qui a pour conséquence les axiomes de l'arithmétique de Robinson, est nécessairement incomplète et indécidable.
Construction des entiers naturelsIl existe plusieurs méthodes classiques de construction des entiers naturels, mais on utilise aujourd’hui le plus souvent celle due à von Neumann . Dans la théorie des ensembles, on définit les entiers par récurrence, en construisant explicitement une suite d'ensembles à partir de l'ensemble vide (la théorie des ensembles postule qu'il existe au minimum un tel ensemble vide).
Arbre (mathématiques)En mathématiques, un arbre est la donnée d'un ensemble E et d'une relation symétrique R sur E telle que deux points distincts quelconques x et y de E soient reliés par un seul chemin injectif fini, ie n+1 points z0,...,zn de E distincts vérifiant x=z0, ziRzi+1 pour i
Lemme de ZornEn mathématiques, le lemme de Zorn (ou théorème de Zorn, ou parfois lemme de Kuratowski-Zorn) est un théorème de la théorie des ensembles qui affirme que si un ensemble ordonné est tel que toute chaîne (sous-ensemble totalement ordonné) possède un majorant, alors il possède un élément maximal. Le lemme de Zorn est équivalent à l'axiome du choix en admettant les autres axiomes de la théorie des ensembles de Zermelo-Fraenkel. Le lemme de Zorn permet d'utiliser l'axiome du choix sans recourir à la théorie des ordinaux (ou à celle des bons ordres via le théorème de Zermelo).
General set theoryGeneral set theory (GST) is George Boolos's (1998) name for a fragment of the axiomatic set theory Z. GST is sufficient for all mathematics not requiring infinite sets, and is the weakest known set theory whose theorems include the Peano axioms. The ontology of GST is identical to that of ZFC, and hence is thoroughly canonical. GST features a single primitive ontological notion, that of set, and a single ontological assumption, namely that all individuals in the universe of discourse (hence all mathematical objects) are sets.
Théorème de Cantorvignette|Georg Cantor Le théorème de Cantor est un théorème mathématique, dans le domaine de la théorie des ensembles. Il énonce que le cardinal d'un ensemble E est toujours strictement inférieur au cardinal de l'ensemble de ses parties P(E), c'est-à-dire essentiellement qu'il n'existe pas de bijection entre E et P(E). Combiné avec l'axiome de l'ensemble des parties et l'axiome de l'infini de la théorie des ensembles usuelle, ce théorème implique qu'il existe une hiérarchie infinie d'ensembles infinis en termes de cardinalité.
Axiome de l'ensemble des partiesEn mathématiques, l'axiome de l'ensemble des parties est l'un des axiomes de la théorie des ensembles, plus précisément des théories des ensembles de Zermelo et de Zermelo-Fraenkel. L'axiome affirme l'existence pour tout ensemble E, d'un ensemble auquel appartiennent tous les sous-ensembles de E, et seulement ceux-ci. Un tel ensemble est nommé ensemble des parties de E, d'où le nom de l'axiome. Cet axiome s'écrit dans le langage formel de la théorie des ensembles, qui est un langage égalitaire du premier ordre avec la relation d'appartenance comme seul symbole primitif non logique.
Dixième problème de HilbertLe dixième problème de Hilbert fait partie de la liste des 23 problèmes posés par David Hilbert en 1900 à Paris, lors de sa conférence au congrès international des mathématiciens. Il énonce : énoncé| X. — De la possibilité de résoudre une équation diophantienne. On donne une équation diophantienne à un nombre quelconque d'inconnues et à coefficients entiers rationnels : On demande de trouver une méthode par laquelle, au moyen d'un nombre fini d'opérations, on pourra distinguer si l'équation est résoluble en nombres entiers rationnels.
Théorème de TarskiNOTOC En logique mathématique, le théorème de Tarski, ou théorème de non définissabilité de Tarski, s'énonce informellement ainsi :On ne peut définir dans le langage de l'arithmétique la vérité des énoncés de ce langage. On s'intéresse ici aux formules du premier ordre sur le langage « 0, s, +, ×, ≤ » vraies sur les entiers. Il s'agit de l'arithmétique vraie (ou la vérité dans N : les nombres entiers positifs). On suppose que le langage est récursif : ce qui est le cas quand les symboles primitifs, « 0, s, +, ×, ≤ » pour l'arithmétique de Peano, sont en nombre fini.
Axiome de limitation de tailleEn théorie des ensembles, plus précisément en théorie des classes, l'axiome de limitation de taille a été proposé par John von Neumann dans le cadre de sa théorie des classes. Il formalise en partie le principe de limitation de taille (traduction de l'anglais limitation of size), l'un des principes énoncés par Bertrand Russell pour développer la théorie des ensembles en évitant les paradoxes, et qui reprend des idées de Georg Cantor.