Concept

Théorème d'Abel (algèbre)

Résumé
En mathématiques et plus précisément en algèbre, le théorème d'Abel, parfois appelé théorème d'Abel-Ruffini ou encore théorème de Ruffini, indique que pour tout entier n supérieur ou égal à 5, il n'existe pas de formule générale exprimant « par radicaux » les racines d'un polynôme quelconque de degré n, c'est-à-dire de formule n'utilisant que les coefficients, la valeur 1, les et l'extraction des racines n-ièmes. Ceci contraste avec les degrés 2, 3 et 4 pour lesquels de telles formules génériques existent, la plus connue étant celle pour le degré 2, qui exprime les solutions de sous la forme Ce résultat est exprimé pour la première fois par Paolo Ruffini, puis démontré rigoureusement par Niels Henrik Abel. Un théorème ultérieur d'Évariste Galois donne une condition nécessaire et suffisante pour qu'une équation polynomiale soit résoluble par radicaux. Cette version plus précise permet d'exhiber des équations de degré 5, à coefficients entiers, dont les racines complexes — qui existent d'après le théorème de d'Alembert-Gauss — ne s'expriment pas par radicaux. Tous les corps considérés dans cet article sont supposés commutatifs et de caractéristique nulle. thumb|Niels Henrik Abel (1802-1829) présente la première démonstration rigoureuse et complète du théorème qui porte maintenant son nom. Le théorème d'Abel et le théorème de d'Alembert-Gauss sont les deux théorèmes fondamentaux de la théorie des équations, c'est-à-dire la théorie qui traite des équations polynomiales ou équivalentes. Une équation est dite polynomiale si elle est de la forme P(x) = 0, où P désigne un polynôme. Le théorème de d'Alembert-Gauss indique qu'une équation polynomiale à coefficients complexes admet au moins une racine complexe. Des méthodes numériques comme la méthode de Newton ou celle de Laguerre s'appliquent indépendamment du degré de l'équation. Si n, le degré du polynôme, est petit, il existe aussi des méthodes dites algébriques pour résoudre l'équation. Ainsi, si n est égal à 2, et si P s'écrit les solutions sont données par la formule classique où est le discriminant du polynôme ; on dit que est un radical.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.