Relations entre coefficients et racinesvignette|portrait de François Viète. Un polynôme de degré sur un corps K s'écrit sous sa forme la plus générale : où est appelé coefficient de . Si est scindé, on peut aussi le définir grâce à ses racines, c'est-à-dire l'ensemble des valeurs de qui annulent . Ainsi, le théorème de d'Alembert-Gauss garantit que tout polynôme de degré à coefficients complexes admet exactement racines sur , éventuellement multiples (sur en revanche, ce n'est pas toujours vrai).
Théorie des équations (histoire des sciences)thumb|upright|Évariste Galois offre une condition nécessaire et suffisante à la résolution d'une équation polynomiale par l’algèbre. Il répond ainsi à une question centrale de la théorie, ouverte depuis des millénaires. Sa méthode fournit des résultats novateurs, à l’origine de nouvelles branches de l’algèbre, qui dépassent le cadre de la théorie des équations. La théorie des équations est un ensemble de travaux ayant pour objectif premier la résolution d’équations polynomiales ou équivalentes.
IndéterminéeExemple de polynôme à coefficients entiers, d'indéterminée . En mathématiques, une indéterminée est le concept permettant de formaliser des objets comme les polynômes formels, les fractions rationnelles ou encore les séries formelles. On la désigne en général par la lettre majuscule X. L'indéterminée permet de définir des structures algébriques parfois plus simples que leurs équivalents en analyse. Par exemple, sur tout anneau intègre, le corps des fractions rationnelles, défini à l'aide de l'indéterminée X, diffère de la structure équivalente des fonctions rationnelles de la variable x.