Équation quartiqueEn mathématiques, une équation quartique est une équation polynomiale de degré 4. Les équations quartiques ont été résolues dès que furent connues les méthodes de résolution des équations du troisième degré. Ont été développées successivement la méthode de Ferrari et la méthode de Descartes. La méthode de Lagrange, décrite ci-dessous, est issue des propriétés des polynômes symétriques construits à partir des n racines d'un polynôme de degré n. La méthode de résolution de l'équation quartique est établie depuis déjà deux siècles par Ludovico Ferrari (1522-1565).
Resolvent (Galois theory)In Galois theory, a discipline within the field of abstract algebra, a resolvent for a permutation group G is a polynomial whose coefficients depend polynomially on the coefficients of a given polynomial p and has, roughly speaking, a rational root if and only if the Galois group of p is included in G. More exactly, if the Galois group is included in G, then the resolvent has a rational root, and the converse is true if the rational root is a simple root. Resolvents were introduced by Joseph Louis Lagrange and systematically used by Évariste Galois.
Groupe résolubleEn mathématiques, un groupe résoluble est un groupe qui peut être construit à partir de groupes abéliens par une suite finie d'extensions. Théorème d'Abel (algèbre) La théorie des groupes tire son origine de la recherche de solutions générales (ou de leur absence) pour les racines des polynômes de degré 5 ou plus. Le concept de groupe résoluble provient d'une propriété partagée par les groupes d'automorphismes des polynômes dont les racines peuvent être exprimées en utilisant seulement un nombre fini d'opérations élémentaires (racine n-ième, addition, multiplication, ).
Théorie de GaloisEn mathématiques et plus précisément en algèbre, la théorie de Galois est l'étude des extensions de corps commutatifs, par le biais d'une correspondance avec des groupes de transformations sur ces extensions, les groupes de Galois. Cette méthode féconde, qui constitue l'exemple historique, a essaimé dans bien d'autres branches des mathématiques, avec par exemple la théorie de Galois différentielle, ou la théorie de Galois des revêtements. Cette théorie est née de l'étude par Évariste Galois des équations algébriques.
Théorème fondamental de la théorie de GaloisEn mathématiques et plus précisément en algèbre commutative, le théorème fondamental de la théorie de Galois établit une correspondance entre les extensions intermédiaires d'une extension finie de corps et leurs groupes de Galois, dès lors que l'extension est galoisienne, c’est-à-dire séparable et normale. Soient L une extension galoisienne finie de K et G son groupe de Galois. Pour tout sous-groupe H de G, on note LH le sous-corps de L constitué des éléments fixés par chaque élément de H.
Degré d'un polynômeEn algèbre commutative, le degré d'un polynôme (en une ou plusieurs indéterminées) est le degré le plus élevé de ses termes lorsque le polynôme est exprimé sous sa forme canonique constituée d'une somme de monômes. Le degré d'un terme est la somme des exposants des indéterminées qui y apparaissent. Le terme ordre a été utilisé comme synonyme de degré, mais de nos jours, il fait référence à des concepts différents, bien que connexes. Par exemple, le polynôme 7XY + 4X – 9 a trois monômes.
Évariste GaloisÉvariste Galois est un mathématicien français, né le à Bourg-Égalité (aujourd’hui Bourg-la-Reine) et mort le à Paris. Son nom a été donné à une branche des mathématiques dont il a posé les prémices, la théorie de Galois. Il est un précurseur dans la mise en évidence de la notion de groupe et un des premiers à expliciter la correspondance entre symétries et invariants. Sa « théorie de l'ambiguïté » est toujours féconde au .
Solution in radicalsA solution in radicals or algebraic solution is a closed-form expression, and more specifically a closed-form algebraic expression, that is the solution of a polynomial equation, and relies only on addition, subtraction, multiplication, division, raising to integer powers, and the extraction of nth roots (square roots, cube roots, and other integer roots). A well-known example is the solution of the quadratic equation There exist more complicated algebraic solutions for cubic equations and quartic equations.
Indépendance algébriqueEn algèbre, l'indépendance algébrique d'un ensemble de nombres, sur un corps commutatif, décrit le fait que ses éléments ne sont pas racines d'un polynôme en plusieurs indéterminées à coefficients dans ce corps. Soient L un corps commutatif, S un sous-ensemble de L et K un sous-corps de L. On dit que S est algébriquement libre sur K, ou que ses éléments sont algébriquement indépendants sur K si, pour tout suite finie (s, ... , s) d'éléments distincts de S et tout polynôme non nul P(X, ...
Théorème fondamental des fonctions symétriquesEn mathématiques, et plus particulièrement en algèbre commutative, le théorème fondamental des fonctions symétriques, souvent appelé « théorème fondamental des polynômes symétriques » ou « théorème de Newton », stipule que tout polynôme symétrique en n indéterminées à coefficients dans un anneau (commutatif) A s'exprime de façon unique par une fonction polynomiale des n polynômes symétriques élémentaires. Autrement dit, les n polynômes symétriques élémentaires forment une partie génératrice de l'algèbre des polynômes symétriques en n indéterminées sur A et sont algébriquement indépendants sur A.