Crible quadratiqueL'algorithme du crible quadratique est un algorithme de factorisation fondé sur l'arithmétique modulaire. C'est en pratique le plus rapide après le crible général des corps de nombres, lequel est cependant bien plus compliqué, et n'est plus performant que pour factoriser un nombre entier d'au moins cent chiffres. Le crible quadratique est un algorithme de factorisation non spécialisé, c'est-à-dire que son temps d'exécution dépend uniquement de la taille de l'entier à factoriser, et non de propriétés particulières de celui-ci.
Entier friableEn théorie des nombres, un nombre friable, ou lisse, est un entier naturel dont l'ensemble des facteurs premiers sont petits, relativement à une borne donnée. Les entiers friables sont particulièrement importants dans la cryptographie basée sur la factorisation, qui constitue depuis une vingtaine d'années une branche dynamique de la théorie des nombres, avec des applications dans des domaines aussi variés que l'algorithmique (problème du logarithme discret), la théorie de la sommabilité (sommation friable des séries de Fourier), la théorie élémentaire des nombres premiers (preuve élémentaire du théorème des nombres premiers de Daboussi en 1984), la méthode du cercle (problème de Waring), le modèle de Billingsley, le modèle de , l', les théorèmes de type Erdős-Wintner, etc.
Notation LLa notation L est un analogue aux notations de Landau en notation asymptotique. Cette notation a été introduite par Carl Pomerance en 1982 pour comparer différents algorithmes de factorisation et a été généralisée à deux paramètres par Arjen Lenstra et Hendrik Lenstra. Elle est principalement utilisée en théorie algorithmique des nombres, où elle permet de donner une échelle entre les différents algorithmes exponentiels.
Complexité en tempsEn algorithmique, la complexité en temps est une mesure du temps utilisé par un algorithme, exprimé comme fonction de la taille de l'entrée. Le temps compte le nombre d'étapes de calcul avant d'arriver à un résultat. Habituellement, le temps correspondant à des entrées de taille n est le temps le plus long parmi les temps d’exécution des entrées de cette taille ; on parle de complexité dans le pire cas. Les études de complexité portent dans la majorité des cas sur le comportement asymptotique, lorsque la taille des entrées tend vers l'infini, et l'on utilise couramment les notations grand O de Landau.
Théorie des criblesEn mathématiques, la théorie des cribles est une partie de la théorie des nombres ayant pour but d'estimer, à défaut de dénombrer, les cardinaux de sous-ensembles (éventuellement infinis) de N en approchant la fonction indicatrice du sous-ensemble considéré. Cette technique a pour origine le crible d'Ératosthène, et dans ce cas, le but était d'étudier l'ensemble des nombres premiers. Un des nombreux résultats que l'on doit aux cribles a été découvert par Viggo Brun en 1919.
Logarithme discretLe logarithme discret est un objet mathématique utilisé en cryptologie. C'est l'analogue du logarithme réel qui est la réciproque de l'exponentielle, mais dans un groupe cyclique G fini. Le logarithme discret est utilisé pour la cryptographie à clé publique, typiquement dans l'échange de clés Diffie-Hellman et le chiffrement El Gamal.
Algorithmic efficiencyIn computer science, algorithmic efficiency is a property of an algorithm which relates to the amount of computational resources used by the algorithm. An algorithm must be analyzed to determine its resource usage, and the efficiency of an algorithm can be measured based on the usage of different resources. Algorithmic efficiency can be thought of as analogous to engineering productivity for a repeating or continuous process. For maximum efficiency it is desirable to minimize resource usage.
Congruence de carrésEn arithmétique modulaire, une congruence de carrés modulo un entier naturel n est une équation de la forme Une telle équation apporte des informations utiles pour essayer de factoriser l'entier n. En effet, Ceci veut dire que n divise le produit (x + y)(x − y) mais ne divise aucun des deux facteurs x + y et x − y, donc x + y et x − y contiennent tous les deux des diviseurs propres de n, que l'on trouve en calculant les PGCD de (x + y, n) et de (x − y, n).
Computational complexity of mathematical operationsThe following tables list the computational complexity of various algorithms for common mathematical operations. Here, complexity refers to the time complexity of performing computations on a multitape Turing machine. See big O notation for an explanation of the notation used. Note: Due to the variety of multiplication algorithms, below stands in for the complexity of the chosen multiplication algorithm. This table lists the complexity of mathematical operations on integers.
Décomposition en produit de facteurs premiersvignette|Décomposition du nombre 864 en facteurs premiers En mathématiques et plus précisément en arithmétique, la décomposition en produit de facteurs premiers, aussi connue comme la factorisation entière en nombres premiers ou encore plus couramment la décomposition en facteurs premiers, consiste à chercher à écrire un entier naturel non nul sous forme d'un produit de nombres premiers. Par exemple, si le nombre donné est 45, la factorisation en nombres premiers est 3 × 5, soit 3 × 3 × 5.