EquiconsistencyIn mathematical logic, two theories are equiconsistent if the consistency of one theory implies the consistency of the other theory, and vice versa. In this case, they are, roughly speaking, "as consistent as each other". In general, it is not possible to prove the absolute consistency of a theory T. Instead we usually take a theory S, believed to be consistent, and try to prove the weaker statement that if S is consistent then T must also be consistent—if we can do this we say that T is consistent relative to S.
Problèmes de HilbertLors du deuxième congrès international des mathématiciens, tenu à Paris en août 1900, David Hilbert entendait rivaliser avec le maître des mathématiques françaises, Henri Poincaré, et prouver qu'il était de la même étoffe. Il présenta une liste de problèmes qui tenaient jusqu'alors les mathématiciens en échec. Ces problèmes devaient, selon Hilbert, marquer le cours des mathématiques du , et l'on peut dire aujourd'hui que cela a été grandement le cas.
Second-order logicIn logic and mathematics, second-order logic is an extension of first-order logic, which itself is an extension of propositional logic. Second-order logic is in turn extended by higher-order logic and type theory. First-order logic quantifies only variables that range over individuals (elements of the domain of discourse); second-order logic, in addition, also quantifies over relations. For example, the second-order sentence says that for every formula P, and every individual x, either Px is true or not(Px) is true (this is the law of excluded middle).
Théorème d'élimination des coupuresEn logique mathématique, le théorème d'élimination des coupures (ou Hauptsatz de Gentzen) est le résultat central établissant l'importance du calcul des séquents. Il a été initialement prouvé par Gerhard Gentzen en 1934 dans son article historique « Recherches sur la déduction logique » pour les systèmes LJ et LK formalisant la logique intuitionniste et classique, respectivement.
Primitive recursive arithmeticPrimitive recursive arithmetic (PRA) is a quantifier-free formalization of the natural numbers. It was first proposed by Norwegian mathematician , as a formalization of his finitistic conception of the foundations of arithmetic, and it is widely agreed that all reasoning of PRA is finitistic. Many also believe that all of finitism is captured by PRA, but others believe finitism can be extended to forms of recursion beyond primitive recursion, up to ε0, which is the proof-theoretic ordinal of Peano arithmetic.