En mathématiques, une 3-variété est une variété de dimension 3, au sens des variétés topologiques, ou différentielles (en dimension 3, ces catégories sont équivalentes). Certains phénomènes sont liés spécifiquement à la dimension 3, si bien qu'en cette dimension, des techniques particulières prévalent, qui ne se généralisent pas aux dimensions supérieures.
In mathematics, a knot is an embedding of a circle into 3-dimensional Euclidean space. The knot group of a knot K is defined as the fundamental group of the knot complement of K in R3, Other conventions consider knots to be embedded in the 3-sphere, in which case the knot group is the fundamental group of its complement in . Two equivalent knots have isomorphic knot groups, so the knot group is a knot invariant and can be used to distinguish between certain pairs of inequivalent knots.
In the mathematical area of knot theory, the crossing number of a knot is the smallest number of crossings of any diagram of the knot. It is a knot invariant. By way of example, the unknot has crossing number zero, the trefoil knot three and the figure-eight knot four. There are no other knots with a crossing number this low, and just two knots have crossing number five, but the number of knots with a particular crossing number increases rapidly as the crossing number increases.
En mathématiques, une homotopie est une déformation continue entre deux applications, notamment entre les chemins à extrémités fixées et en particulier les lacets. Cette notion topologique permet de définir des invariants algébriques utilisés pour classifier les applications continues entre espaces topologiques dans le cadre de la topologie algébrique. L’homotopie induit une relation d'équivalence sur les applications continues, compatible avec la composition, qui mène à la définition de l’équivalence d'homotopie entre espaces topologiques.
En mathématiques et plus précisément en théorie des nœuds, les anneaux borroméens constituent un entrelacs de trois cercles (au sens topologique) qui ne peuvent être détachés les uns des autres même en les déformant, mais tel que la suppression de n'importe quel cercle libère les deux cercles restants. Autrement dit, il s'agit d'un exemple d'entrelacs brunnien. La dénomination vient de l'utilisation qui en était faite dans les armoiries d'une famille italienne, les Borromeo.
En mathématiques, et plus précisément en théorie des nœuds, le polynôme d'Alexander est un invariant de nœuds qui associe un polynôme à coefficients entiers à chaque type de nœud. C'est le premier découvert ; il l'a été par James Waddell Alexander II, en 1923. En 1969, John Conway en montra une version, appelée à présent le polynôme d'Alexander-Conway, pouvant être calculé à l'aide d'une « » (skein relation), mais l'importance n'en fut pas comprise avant la découverte du polynôme de Jones en 1984.
En mathématiques, et plus précisément en théorie des nœuds, les mouvements de Reidemeister sont des mouvements locaux de brins d'un nœud dans diagrammes de nœuds. Kurt Reidemeister, en 1927, et, indépendamment, Alexander Briggs en 1926, ont démontré que deux diagrammes de nœuds représentent le même nœud, si on peut passer de l'un à l'autre par une suite de mouvements de Reidemeister. Il y en a trois types de mouvements comme montrés sur la figure à droite. On numérote le type de mouvement selon le nombre de morceaux de brins qui y apparaît.
En géométrie, la conjecture de géométrisation de Thurston affirme que les 3-variétés compactes peuvent être décomposées en sous-variétés admettant l'une des huit structures géométriques appelées géométries de Thurston. Formulée par William Thurston en 1976, cette conjecture fut démontrée par Grigori Perelman en 2003. On dit qu'une variété est fermée si elle est compacte et sans bord, et qu'elle est si elle n'est pas somme connexe de variétés qui ne sont pas des sphères.
L'homologie de Floer est une adaptation de l'homologie de Morse en dimension infinie. L'homologie de Floer symplectique (HFS) est une théorie homologique pour une variété symplectique munie d'un symplectomorphisme non-dégénéré. Si le symplectomorphisme est hamiltonien, l'homologie provient de l'étude de la fonctionnelle d'action symplectique sur le revêtement universel de l'espace des lacets de la variété symplectique. L'homologie de Floer symplectique est invariante par isotopie hamiltonienne du symplectomorphisme.
In gauge theory and mathematical physics, a topological quantum field theory (or topological field theory or TQFT) is a quantum field theory which computes topological invariants. Although TQFTs were invented by physicists, they are also of mathematical interest, being related to, among other things, knot theory and the theory of four-manifolds in algebraic topology, and to the theory of moduli spaces in algebraic geometry. Donaldson, Jones, Witten, and Kontsevich have all won Fields Medals for mathematical work related to topological field theory.