List of periodic functionsThis is a list of some well-known periodic functions. The constant function _ () = , where c is independent of x, is periodic with any period, but lacks a fundamental period. A definition is given for some of the following functions, though each function may have many equivalent definitions. All trigonometric functions listed have period , unless otherwise stated. For the following trigonometric functions: Un is the nth up/down number, Bn is the nth Bernoulli number in Jacobi elliptic functions, The following functions have period and take as their argument.
HypocycloïdeUne hypocycloïde est une courbe plane transcendante, trajectoire d'un point fixé à un cercle qui roule sans glisser sur un autre cercle dit directeur et à l'intérieur de celui-ci. Il s'agit donc d'un cas particulier de cycloïde à centre, qui est une catégorie de courbe cycloïdale. Le mot est une extension de cycloïde, inventé en 1599 par Galilée, et a la même étymologie : il vient du grec hupo (sous), kuklos (cercle, roue) et eidos (forme, « semblable à »).
Spirographe (jeu)Le Spirographe, marque déposée par la société américaine Hasbro, est un instrument de dessin permettant de tracer des figures géométriques, des courbes mathématiques techniquement connues sous le nom d'hypotrochoïdes. Le mot est également utilisé dans des logiciels qui montrent des courbes semblables. Les courbes engendrées par la trajectoire d'une roue tournant à l’intérieur de la circonférence d'une autre roue, ont été découvertes par le peintre et mathématicien allemand Albrecht Dürer en 1525.
ÉpitrochoïdeUne épitrochoïde est une courbe plane transcendante, correspondant à la trajectoire d'un point fixé à un cercle mobile qui roule sans glisser sur et autour d'un autre cercle dit directeur. où R est le rayon du cercle directeur, r celui du cercle mobile, d la distance du point au centre du cercle mobile et le paramètre d'angle. Toute épicycloïde de paramètres R, r, d est équivalente à une péritrochoïde de paramètres Par péritrochoïde, on entend la courbe obtenue à l'aide d'un point lié à un cercle mobile roulant sans glisser autour d'un cercle directeur qu'il contient, soit une « hypotrochoïde » pour laquelle .
ÉpicycloïdeUne épicycloïde est une courbe plane transcendante, trajectoire d'un point fixé à un cercle qui roule sans glisser sur un autre cercle dit directeur, les disques ouverts ayant ces deux cercles pour frontière étant disjoints. Il s'agit donc d'un cas particulier de cycloïde à centre, qui est une catégorie de courbe cycloïdale. Le mot est une extension de cycloïde, inventé en 1599 par Galilée, et a la même étymologie : il vient du grec epi (sur), kuklos (cercle, roue) et eidos (forme, « semblable à »).
Précession du périastrevignette|Illustration du phénomène de précession du périastre : le périastre (en bleu) et la ligne des absides tournent dans le plan de l'orbite au cours du temps. vignette|redresse=1.2|Les planètes en orbite autour du Soleil suivent des trajectoires elliptiques (ovales) qui tournent dans le temps (précession absidale). La plupart des orbites du système solaire ont une excentricité beaucoup plus faible et une précession beaucoup plus lente, ce qui les rend presque circulaires et stationnaires.
Théorème de La HireLe théorème de La Hire est démontré dans le traité des roulettes (publié en 1706) du mathématicien français Philippe de La Hire, mais il était connu bien avant La Hire. Il peut être séparé en deux propositions : la première est que tout point fixe d'un cercle C de rayon r roulant sans glisser intérieurement sur un cercle C′ de rayon 2r décrit un diamètre de C′, la seconde plus générale est que dans les mêmes conditions tout point lié au cercle mobile C décrit une ellipse.
CyclogonIn geometry, a cyclogon is the curve traced by a vertex of a polygon that rolls without slipping along a straight line. There are no restrictions on the nature of the polygon. It can be a regular polygon like an equilateral triangle or a square. The polygon need not even be convex: it could even be a star-shaped polygon. More generally, the curves traced by points other than vertices have also been considered. In such cases it would be assumed that the tracing point is rigidly attached to the polygon.
Cycloïdeframe|right|Le point mobile engendre une cycloïde droite.La cycloïde droite, aussi appelée roue d'Aristote ou roulette de Pascal, est une courbe plane transcendante, trajectoire d'un point fixé à un cercle qui roule sans glisser sur une droite ; elle a été appelée cycloïde pour la première fois par Jean de Beaugrand. Il s'agit donc d'une courbe cycloïdale particulière dont la directrice est une droite et dont le point générateur est situé sur le cercle lui-même ; c'est un cas particulier de trochoïde.