Calcul stochastiqueLe calcul est l’étude des phénomènes aléatoires dépendant du temps. À ce titre, c'est une extension de la théorie des probabilités. Ne pas confondre avec la technique des calculateurs stochastiques. Le domaine d’application du calcul stochastique comprend la mécanique quantique, le traitement du signal, la chimie, les mathématiques financières, la météorologie et même la musique. Un processus aléatoire est une famille de variables aléatoires indexée par un sous-ensemble de ou , souvent assimilé au temps (voir aussi Processus stochastique).
Méthode des trapèzesEn analyse numérique, la méthode des trapèzes est une méthode pour le calcul numérique d'une intégrale s'appuyant sur l'interpolation linéaire par intervalles. Le principe est d'assimiler la région sous la courbe représentative d'une fonction f définie sur un segment [a , b] à un trapèze et d'en calculer l'aire T : En analyse numérique l'erreur est par convention la différence entre la valeur exacte (limite) et son approximation par un nombre fini d'opérations. ()..
Intégrale de DarbouxEn analyse réelle, une branche des mathématiques, l'intégrale de Darboux est construite à partir des intégrales de Darboux inférieure et supérieure, elles-mêmes définies, soit avec les sommes de Darboux, soit avec des fonctions en escalier. Il s'agit d'une manière de définir l'intégrale d'une fonction à valeurs réelles définie sur un segment de la droite réelle.
SemimartingaleIn probability theory, a real valued stochastic process X is called a semimartingale if it can be decomposed as the sum of a local martingale and a càdlàg adapted finite-variation process. Semimartingales are "good integrators", forming the largest class of processes with respect to which the Itô integral and the Stratonovich integral can be defined. The class of semimartingales is quite large (including, for example, all continuously differentiable processes, Brownian motion and Poisson processes).
Intégrale d'Itōvignette|Tracé d'une trajectoire échantillon d'un processus de Wiener, ou mouvement brownien, B, ainsi que son intégrale d'Itô par rapport à lui-même. L'intégration par parties ou le lemme d'Itô montre que l'intégrale est égale à (B2 - t)/2. L'intégrale d'Itô, appelée en l'honneur du mathématicien Kiyoshi Itô, est un des outils fondamentaux du calcul stochastique. Elle a d'importantes applications en mathématique financière et pour la résolution des équations différentielles stochastiques.
Intégrale non élémentaireEn mathématiques, une intégrale non élémentaire est une intégrale qui n'a aucune formule en termes de fonctions élémentaires. L'existence de telles fonctions a été démontrée par Joseph Liouville en 1835. Parmi les intégrales non élémentaires, on peut citer où R est une fonction rationnelle à deux variables, P est une fonction polynomiale de degré 3 ou 4 avec des racines simples, qui donnent les intégrales elliptiques ; qui donne le logarithme intégral ; à l'origine de la loi normale. Théorème de Liouvill
Méthode de SimpsonEn analyse numérique, la méthode de Simpson, du nom de Thomas Simpson, est une technique de calcul numérique d'une intégrale, c'est-à-dire le calcul approché de : Cette méthode utilise l'approximation d'ordre 2 de f par un polynôme quadratique P prenant les mêmes valeurs que f aux points d'abscisse a, b et m = . Pour déterminer l'expression de cette parabole (polynôme de degré 2), on utilise l'interpolation lagrangienne.
Algorithme de RischL’algorithme de Risch, dû à , est un algorithme destiné aux systèmes de calcul formel, permettant de calculer des primitives, c'est-à-dire de déterminer une fonction, connaissant sa dérivée. L’algorithme transforme ce problème en un problème d'algèbre (ou plus précisément d'). Il est basé sur la forme de la fonction à intégrer et sur des méthodes pour intégrer les fonctions rationnelles, les radicaux, les logarithmes, et les exponentielles.
Théorème de GreenEn mathématiques, le théorème de Green, ou théorème de Green-Riemann, donne la relation entre une intégrale curviligne le long d'une courbe simple fermée orientée C par morceaux et l'intégrale double sur la région du plan délimitée par cette courbe. Ce théorème, nommé d'après George Green et Bernhard Riemann, est un cas particulier du théorème de Stokes. thumb|upright=0.9|Domaine délimité par une courbe régulière par morceaux. Vu comme cas particulier du théorème de Stokes, le théorème s'écrit sous la forme suivante, en notant ∂D la courbe C et ω la forme différentielle.
Fonction étagéeEn mathématiques et en analyse : Une fonction simple est une fonction numérique dont l' est constituée d'un nombre fini de valeurs réelles (ou éventuellement complexes) ; Une fonction étagée est une fonction simple définie sur un espace mesurable et qui est elle-même une fonction mesurable ; Une fonction en escalier est une fonction étagée définie sur l’ensemble des réels et dont les valeurs (réelles) sont constantes sur des intervalles : ce sont donc des fonctions constantes par morceaux.