In probability theory, a real valued stochastic process X is called a semimartingale if it can be decomposed as the sum of a local martingale and a càdlàg adapted finite-variation process. Semimartingales are "good integrators", forming the largest class of processes with respect to which the Itô integral and the Stratonovich integral can be defined.
The class of semimartingales is quite large (including, for example, all continuously differentiable processes, Brownian motion and Poisson processes). Submartingales and supermartingales together represent a subset of the semimartingales.
A real valued process X defined on the filtered probability space (Ω,F,(Ft)t ≥ 0,P) is called a semimartingale if it can be decomposed as
where M is a local martingale and A is a càdlàg adapted process of locally bounded variation.
An Rn-valued process X = (X1,...,Xn) is a semimartingale if each of its components Xi is a semimartingale.
First, the simple predictable processes are defined to be linear combinations of processes of the form Ht = A1{t > T} for stopping times T and FT -measurable random variables A. The integral H · X for any such simple predictable process H and real valued process X is
This is extended to all simple predictable processes by the linearity of H · X in H.
A real valued process X is a semimartingale if it is càdlàg, adapted, and for every t ≥ 0,
is bounded in probability. The Bichteler-Dellacherie Theorem states that these two definitions are equivalent .
Adapted and continuously differentiable processes are continuous finite variation processes, and hence semimartingales.
Brownian motion is a semimartingale.
All càdlàg martingales, submartingales and supermartingales are semimartingales.
Itō processes, which satisfy a stochastic differential equation of the form dX = σdW + μdt are semimartingales. Here, W is a Brownian motion and σ, μ are adapted processes.
Every Lévy process is a semimartingale.
Although most continuous and adapted processes studied in the literature are semimartingales, this is not always the case.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Introduction to the mathematical theory of stochastic calculus: construction of stochastic Ito integral, proof of Ito formula, introduction to stochastic differential equations, Girsanov theorem and F
This course gives an introduction to probability theory and stochastic calculus in discrete and continuous time. We study fundamental notions and techniques necessary for applications in finance such
In this course, various aspects of probability theory are considered. The first part is devoted to the main theorems in the field (law of large numbers, central limit theorem, concentration inequaliti
vignette|Tracé d'une trajectoire échantillon d'un processus de Wiener, ou mouvement brownien, B, ainsi que son intégrale d'Itô par rapport à lui-même. L'intégration par parties ou le lemme d'Itô montre que l'intégrale est égale à (B2 - t)/2. L'intégrale d'Itô, appelée en l'honneur du mathématicien Kiyoshi Itô, est un des outils fondamentaux du calcul stochastique. Elle a d'importantes applications en mathématique financière et pour la résolution des équations différentielles stochastiques.
En mathématiques, la variation quadratique est utilisée dans l'analyse des processus stochastiques, comme le mouvement brownien et autres martingales. La variation quadratique est un type de variation d'un processus. Si est un processus stochastique à valeurs réelles défini sur un espace probabilisé et avec un indice de temps qui parcourt les nombres réels positifs, sa variation quadratique est le processus, noté , défini par : où parcourt les subdivisions de l'intervalle et la norme de la subdivision est son pas.
Dans la théorie des processus stochastiques, une martingale locale est un processus stochastique qui est localement une martingale, ce qui signifie qu'il y a une suite de localisation de temps d'arrêt et que le processus arrêté est une martingale. Soi un espace de probabilité filtré et un processus -adapté avec (zéro à zéro). S'il existe une suite non décroissante de temps d'arrêt de telle que et pour tout le processus arrêté défini par soit une martingale, alors on appelle une martingale locale et on écrit .
Couvre le théorème de décomposition de Doob pour les sous-martingales et explore les propriétés des mouvements browniens, la variation quadratique et les martingales continues.
Couvre le Théorème de Girsanov, mesures absolument continues, et simulation numérique des équations différentielles stochastiques (EDD) avec applications en finance.
We investigate the regularizing effect of certain additive continuous perturbations on SDEs with multiplicative fractional Brownian motion (fBm). Traditionally, a Lipschitz requirement on the drift and diffusion coefficients is imposed to ensure existence ...
2022
We give an extension of Le's stochastic sewing lemma. The stochastic sewing lemma proves convergence in Lm of Riemann type sums ∑[s,t]∈πAs,t for an adapted two-parameter stochastic process A, under certain conditions on the moments o ...
Epsilon-near-zero (ENZ) materialshave attracted great interestdue to their exotic linear and nonlinear responses, which makes itsignificant to tune ENZ wavelengths for wavelength-dependent applications.However, studies to achieve tunability in a wide spect ...